Plasmons and Diamonds...

13423455256?profile=RESIZE_710x

Topics: Chemistry, Materials Science, Plasmons, Quantum Mechanics, Semiconductor Technology

Researchers report plasmons in boron-doped diamond; quantum applications
Diamond, often celebrated for its unmatched hardness and transparency, has emerged as an exceptional material for high-power electronics and next-generation quantum optics. Diamond can be engineered to be as electrically conductive as a metal, by introducing impurities like the element boron.

Researchers from Case Western Reserve University and the University of Illinois Urbana-Champaign have discovered another interesting property in diamonds with added boron, known as boron-doped diamonds. Their findings could pave the way for new types of biomedical and quantum optical devices—faster, more efficient, and capable of processing information in ways that classical technologies cannot. Their results are published recently in Nature Communications.

Potential advancements in quantum devices, biosensors, solar cells
The researchers found that boron-doped diamonds exhibit plasmons—waves of electrons that move when light hits them—allowing electric fields to be controlled and enhanced on a nanometer scale. This is important for advanced biosensors, nanoscale optical devices, and for improving solar cells and quantum devices. Previously, boron-doped diamonds were known to conduct electricity and become superconductors, but not to have plasmonic properties. Unlike metals or even other doped semiconductors, boron-doped diamonds remain optically clear.

Diamond continues to shine: new properties discovered in diamond semiconductors, Case-Western Reserve University, The Daily

E-mail me when people leave their comments –

You need to be a member of Blacksciencefictionsociety to add comments!

Join Blacksciencefictionsociety