Weighty W...

10336914854?profile=RESIZE_710x

Living on: data taken by the now-defunct CDF experiment has revealed a surprising mass for the W boson. (Courtesy: Fermilab)

Topics: Fermilab, High Energy Physics, Modern Physics, Particle Physics, Steven Weinberg

The most precise measurement to date of the mass of the W boson has yielded a result seven standard deviations away from that predicted by the Standard Model of particle physics. The stunning result was obtained by a painstaking analysis of data taken at the Fermilab Tevatron collider in the US before it closed in 2011. The particle physics community must now study the results carefully to work out whether it is an incredible statistical fluke, an unknown experimental error, a flaw in the Standard Model, or a genuine indication of physics beyond the Standard Model.

The W boson is one of the most intriguing particles described by the Standard Model. Together with the neutral Z boson, the charged W boson mediates the weak interaction, which causes beta decay and several other important processes in particle physics. The weak interaction has long intrigued scientists searching for physics beyond the Standard Model, partly because it is the only force known to violate charge-parity symmetry. If particles in a process are exchanged for their antiparticles and the spatial coordinates are inverted, the weak interaction in this mirror image process is not always identical. This puzzle is not explained in the Standard Model.

W boson mass measurement surprises physicists, Tim Wogan, Physics World

E-mail me when people leave their comments –

You need to be a member of Blacksciencefictionsociety to add comments!

Join Blacksciencefictionsociety