FASER, Neutrinos, and Dark Matter...

8947260494?profile=RESIZE_710x

Illustration of the FASER experiment. Image Credit: FASER/CERN.

Topics: CERN, Dark Matter, High Energy Physics, Neutrinos, Particle Physics

Neutrinos are ubiquitous and notorious. Billions are passing through you at this moment. Occasionally described as a “ghost of a particle,” neutrinos are nearly massless, thereby making them extremely difficult to detect experimentally (“Neutrino,” meaning “little neutral one” in Italian, was first used by Enrico Fermi in the early 1930s). Neutrinos were first confirmed in 1956 (thanks to a nearby nuclear reactor), and they’ve since been detected from different sources, including the Sun and cosmic rays, but not yet in a particle collider. Their elusiveness has been the source of much intrigue (and, of course, research funding) within the particle physics community since.

What else makes them so curious? Neutrinos come in three flavors — electron neutrino, muon neutrino, and tau neutrino — and may switch between them through the process of oscillation. Neutrino oscillations have been experimentally confirmed only in the past decade at the Super-K Detector in Japan (physicists Takaaki Kajita and Arthur B. McDonald shared the 2015 Nobel Prize in Physics for it). This discovery signified an important direction in the search for physics beyond the Standard Model because the longstanding theory does not explain neutrino oscillations and describes them as completely massless particles. Something isn’t quite adding up.

Enter: FASER. Initially proposed in 2018, the ForwArd Search ExpeRiment (FASER) is CERN’s newest experiment poised to detect neutrinos, potentially up to 1300 electron neutrinos, 20,000 muon neutrinos, and 20 tau neutrinos. Constructed in an unused service tunnel located about 500 meters from an Atlas experiment interaction point, FASER and its corresponding sub-detector, FASERν, have been designed to probe interactions of high-energy neutrinos (predicted to be between 600 GeV and 1 TeV).

FASER Poised to Further Our Understanding of Neutrinos, Dark Matter, Hannah Pell, Physics Central Buzz Blog

E-mail me when people leave their comments –

You need to be a member of Blacksciencefictionsociety to add comments!

Join Blacksciencefictionsociety