Rotation curve of the typical spiral galaxy M 33 (yellow and blue points with error bars) and the predicted one from the distribution of the visible matter (white line). The discrepancy between the two curves is accounted for by adding a dark matter halo surrounding the galaxy. Credit: Wikipedia
Topics: Astronomy, Astrophysics, Cosmology, Dark Matter
Although dark matter is central to the standard cosmological model, it's not without issues. There continue to be nagging mysteries about the stuff, not the least of which is the fact that scientists have found no direct particle evidence of it.
Despite numerous searches, we have yet to detect dark matter particles. Some astronomers favor an alternative, such as modified Newtonian dynamics (MoND) or the modified gravity model. And a new study of galactic rotation seems to support them.
The idea of MoND was inspired by galactic rotation. Most of the visible matter in a galaxy is clustered in the middle, so you'd expect that stars closer to the center would have faster orbital speeds than stars farther away, similar to the planets of our solar system. We observe that stars in a galaxy all rotate at about the same speed. The rotation curve is essentially flat rather than dropping off. The dark matter solution is that a halo of invisible matter surrounds galaxies, but in 1983 Mordehai Milgrom argued that our gravitational model must be wrong.
At interstellar distances, the gravitational attraction between stars is essentially Newtonian. So rather than modifying general relativity, Milgrom proposed modifying Newton's universal law of gravity. He argued that rather than the force of attraction as a pure inverse square relation, gravity has a small remnant pull regardless of distance. This remnant is only about ten trillionths of a G, but it's enough to explain galactic rotation curves.
New measurements of galaxy rotation lean toward modified gravity as an explanation for dark matter, Brian Koberlein, Universe Today/Phys.org.
Comments