cosmology (16)

Five Stages...

9255792292?profile=RESIZE_710x

Image source: Link below

Topics: Astrophysics, Cosmology, Einstein, General Relativity, Star Trek

Note: One of the things you find out about sophomore, or junior year in physics is faster-than-light travel violates causality: the arrow of time points forward, not in "loop-de-loop." Thus, we can suspend belief as every version of Trek did time travel episodes, because superluminal speeds would allow grandfather paradoxes, so why not?

As a lifelong Trekkie, it pains me to critique genuine attempts at warp field mechanics. Just note the five stages of grief I have traveled often as I read such articles: "denial, anger, bargaining, depression and acceptance" (Elisabeth Kubler-Ross, and David Kessler), but based on the post that will appear in the morning, a little diversion might be a good thing.

For Erik Lentz, it all started with Star Trek. Every few episodes of Star Trek: The Next Generation, Captain Jean-Luc Picard would raise his hand and order, “Warp one, engage!” Then stars became dashes, and light-years flashed by at impossible speed. And Lentz, still in elementary school, wondered whether warp drive might also work in real life.

“At some point, I realized that the technology didn’t exist,” Lentz says. He studied physics at the University of Washington, wrote his Ph.D. dissertation on dark matter, and generally became far too busy to be concerned with science fiction. But then, at the start of the coronavirus pandemic, Lentz found himself alone in Göttingen, Germany, where he was doing postdoctoral work. He suddenly had plenty of free time on his hands—and childhood fancies in his head.

Lentz read everything he could find on warp drives in the scientific literature, which was not very much. Then he began to think about it for himself. After a few weeks, something occurred to him that everyone else seemed to have overlooked. Lentz put his idea on paper and discussed it with more experienced colleagues. A year later it was published in a physics journal.

It quickly became clear that Lentz was not the only person dreaming about warp drives. Media outlets all over the world picked up the story, and a dozen journalists asked for interviews. A discussion on the online forum Reddit attracted 2,700 comments and 33,000 likes. One Internet user wrote, “Anyone else feels like they were born 300 years too soon?”

Star Trek’s Warp Drive Leads to New Physics, Robert Gast, Scientific American

Read more…

Black Hole Storm...

9107990885?profile=RESIZE_710x

Topics: Astrophysics, Black Holes, Cosmology, Einstein, General Relativity

Note: From comments on a previous post, maybe science writers need to work on their chosen list of metaphors?

In the far reaches of the Universe, a supermassive black hole is throwing a tantrum.

It's blowing a tremendous wind into intergalactic space, and we're seeing the storm light from 13.1 billion years ago when the Universe was less than 10 percent of its current age. It's the most distant such tempest we've ever identified, and its discovery is a clue that could help astronomers unravel the history of galaxy formation.

"The question is when did galactic winds come into existence in the Universe?" said astronomer Takuma Izumi of the National Astronomical Observatory of Japan (NAOJ).

"This is an important question because it is related to an important problem in astronomy: How did galaxies and supermassive black holes coevolve?"

A Colossal Black Hole Storm Has Been Detected Raging in The Early Universe, Michelle Starr, Science Alert

Read more…

Volume of Chaos...

8914855296?profile=RESIZE_584x

Topics: Astronomy, Astrophysics, Cosmology

Physicists have spent centuries grappling with an inconvenient truth about nature: Faced with three stars on a collision course, astronomers could measure their locations and velocities in nanometers and milliseconds and it wouldn’t be enough to predict the stars’ fates. 

But the cosmos frequently brings together trios of stars and black holes. If astrophysicists hope to fully understand regions where heavenly bodies mingle in throngs, they must confront the “three-body problem.” 

While the result of a single three-body event is unknowable, researchers are discovering how to predict the range of outcomes of large groups of three-body interactions. In recent years, various groups have figured out how to make statistical forecasts of hypothetical three-body matchups: For instance, if Earth tangled with Mars and Mercury thousands of times, how often would Mars get ejected? Now, a fresh perspective developed by physicist Barak Kol simplifies the probabilistic “three-body problem,” by looking at it from an abstract new perspective. The result achieves some of the most accurate predictions yet. 

Physicists Edge Closer to Taming the Three-Body Problem, Charlie Wood, Scientific American

Read more…

Panspermia...

8913995667?profile=RESIZE_584x

The mysterious object ‘Oumuamua passed through our solar system in 2017. Loeb has suggested it could have been sent by extraterrestrials. (Credit: European Southern Observatory/Kornmesser)

Topics: Astrobiology, Biology, Cosmology, SETI

Life, for all its complexities, has a simple commonality: It spreads. Plants, animals, and bacteria have colonized almost every nook and cranny of our world.

But why stop there? Some scientists speculate that biological matter may have proliferated across the cosmos itself, transported from planet to planet on wayward lumps of rock and ice. This idea is known as panspermia, and it carries a profound implication: Life on Earth may not have originated on our planet.

In theory, panspermia is fairly simple. Astronomers know that impacts from comets or asteroids on planets will sometimes eject debris with enough force to catapult rocks into space. Some of those space rocks will, in turn, crash into other worlds. A few rare meteorites on Earth are known to have come from Mars, likely in this fashion.

“You can imagine small astronauts sitting inside this rock, surviving the journey,” says Avi Loeb, an astrophysicist at Harvard University and director of the school’s Institute for Theory and Computation. “Microbes could potentially move from one planet to another, from Mars to Earth, from Earth to Venus.” (You may recognize Loeb’s name from his recent book Extraterrestrial: The First Sign of Intelligent Life Beyond Earth, which garnered headlines and criticism from astronomers for its claim that our solar system was recently visited by extraterrestrials.)</p>

Loeb has authored a number of papers probing the mechanics of panspermia, looking at, among other things, how the size and speed of space objects might affect their likelihood of transferring life. While Loeb still thinks it’s more likely that life originated on Earth, he says his work has failed to rule out the possibility that it came from somewhere else in space.

Did Life On Earth Come From Outer Space? Nathaniel Scharping, Discover Magazine

Read more…

Antistars...

8890084664?profile=RESIZE_584x

Astronomers searched for candidate antimatter stars among nearly 6000 gamma-ray sources. After eliminating known objects and sources that lacked the spectral signature of an antistar, 14 possibles remained. (Courtesy: Simon Dupourqué/IRAP)

Topics: Astronomy, Astrophysics, Cosmology, High Energy Physics

Fourteen possible antimatter stars (“antistars”) have been flagged up by astronomers searching for the origin of puzzling amounts of antihelium nuclei detected coming from deep space by the Alpha Magnetic Spectrometer (AMS-02) on the International Space Station.

Three astronomers at the University of Toulouse – Simon Dupourqué, Luigi Tibaldo, and Peter von Ballmoos – found the possible antistars in archive gamma-ray data from NASA’s Fermi Gamma-ray Space Telescope. While antistars are highly speculative, if they are real, then they may be revealed by their production of weak gamma-ray emission peaking at 70 MeV, when particles of normal matter from the interstellar medium fall onto them and are annihilated.

Antihelium-4 was created for the first time in 2011, in particle collisions at the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory. At the time, scientists stated that if antihelium-4 were detected coming from space, then it would definitely have to come from the fusion process inside an antistar.

However, when it was announced in 2018 that AMS-02 had tentatively detected eight antihelium nuclei in cosmic rays – six of antihelium-3 and two of antihelium-4 – those unconfirmed detections were initially attributed to cosmic rays colliding with molecules in the interstellar medium and producing the antimatter in the process.

Subsequent analysis by scientists including Vivian Poulin, now at the University of Montpellier, cast doubt on the cosmic-ray origin since the greater the number of nucleons (protons and neutrons) that an antimatter nucleus has, the more difficult it is to form from cosmic ray collisions. Poulin’s group calculated that antihelium-3 is created by cosmic rays at a rate 50 times less than that detected by the AMS, while antihelium-4 is formed at a rate 105 times less.

The mystery of matter and antimatter

The focus has therefore turned back to what at first may seem an improbable explanation – stars made purely from antimatter. According to theory, matter and antimatter should have been created in equal amounts in the Big Bang, and subsequently, all annihilated leaving a universe full of radiation and no matter. Yet since we live in a matter-dominated universe, more matter than antimatter must have been created in the Big Bang – a mystery that physicists have grappled with for decades.

“Most scientists have been persuaded for decades now that the universe is essentially free of antimatter apart from small traces produced in collisions of normal matter,” says Tibaldo.

The possible existence of antistars threatens to turn this on its head. “The definitive discovery of antihelium would be absolutely fundamental,” says Dupourqué.

Are antimatter stars firing bullets of antihelium at Earth? Physics World, published in Physical Review D

Read more…

Meh...

8491183086?profile=RESIZE_584x

Topics: Astrobiology, Astronomy, Cosmology, SETI

I would extend his theme to cover something that comes naturally to us all, which I’ll call Pseudo-exceptionalism—the unearned conviction that we are exceptional, superior to others because we were born...us.

We simply assume that we’re kinder, more honest, more realistic, more wholesome than those around us. After all, we’re married to ourselves for life, so we make accommodations: We cut ourselves slack. We’re fast to forgive ourselves. When challenged, we’re much better at making our case than our opponent’s. We spot injustices to ourselves far faster than we spot our injustices to others.</em>

Why Some People (Maybe Even Us) Think They're So Special
… and what to do about it. Jeremy E. Sherman Ph.D., MPP, Psychology Today

It is presumptuous to assume that we are worthy of special attention from advanced species in the Milky Way. We may be a phenomenon as uninteresting to them as ants are to us; after all, when we’re walking down the sidewalk we rarely if ever examine every ant along our path.

Our sun formed at the tail end of the star formation history of the universe. Most stars are billions of years older than ours. So much older, in fact, that many sunlike stars have already consumed their nuclear fuel and cooled off to a compact Earth-size remnant known as a white dwarf. We also learned recently that of order half of all sunlike stars host an Earth-size planet in their habitable zone, allowing for liquid water and for the chemistry of life.

Since the dice of life were rolled in billions of other locations within the Milky Way under similar conditions to those on Earth, life as we know it is likely common. If that is indeed the case, some intelligent species may well be billions of years ahead of us in their technological development. When weighing the risks involved in interactions with less-developed cultures such as ours, these advanced civilizations may choose to refrain from contact. The silence implied by Fermi's paradox (“Where is everybody?”) may mean that we are not the most attention-worthy cookies in the jar.

Why Do We Assume Extraterrestrials Might Want to Visit Us? Avi Loeb, Scientific American

Read more…

Our Galaxy's Water Worlds...

16x9_CPA-4%2BWater%2BWorlds%2BNASA%2Bimagex.jpg
This artist’s concept shows a hypothetical planet covered in water around the binary star system of Kepler-35A and B. The composition of such water worlds has fascinated astronomers and astrophysicists for years. (Image by NASA/JPL-Caltech.)

 

Topics: Astronomy, Astrobiology, Astrophysics, Cosmology, Exoplanets

Out beyond our solar system, visible only as the smallest dot in space with even the most powerful telescopes, other worlds exist. Many of these worlds, astronomers have discovered, may be much larger than Earth and completely covered in water — basically ocean planets with no protruding land masses. What kind of life could develop on such a world? Could a habitat like this even support life?

A team of researchers led by Arizona State University (ASU) recently set out to investigate those questions. And since they couldn’t travel to distant exoplanets to take samples, they decided to recreate the conditions of those water worlds in the laboratory. In this case, that laboratory was the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science User Facility at the DOE’s Argonne National Laboratory.

What they found — recently published in Proceedings of the National Academy of Sciences — was a new transitional phase between silica and water, indicating that the boundary between water and rock on these exoplanets is not as solid as it is here on Earth. This pivotal discovery could change the way astronomers and astrophysicists have been modeling these exoplanets, and inform the way we think about life evolving on them.

Dan Shim, associate professor at ASU, led this new research. Shim leads ASU’s Lab for Earth and Planetary Materials and has long been fascinated by the geological and ecological makeup of these distant worlds. That composition, he said, is nothing like any planet in our solar system — these planets may have more than 50% water or ice atop their rock layers, and those rock layers would have to exist at very high temperatures and under crushing pressure.

Beneath the surface of our galaxy’s water worlds, Andre Salles, Argonne National Laboratory

Read more…

Axions...

 

axionparticl.jpg
Image Source: Axion particle spotted in solid-state crystal, Max Planck Society, Phys.org

 

 

Topics: Cosmology, Dark Matter, Particle Physics, Quantum Mechanics, Standard Model

A team of physicists has made what might be the first-ever detection of an axion.

Axions are unconfirmed, hypothetical ultralight particles from beyond the Standard Model of particle physics, which describes the behavior of subatomic particles. Theoretical physicists first proposed the existence of axions in the 1970s in order to resolve problems in the math governing the strong force, which binds particles called quarks together. But axions have since become a popular explanation for dark matter, the mysterious substance that makes up 85% of the mass of the universe, yet emits no light.

If confirmed, it’s not yet certain whether these axions would, in fact, fix the asymmetries in the strong force. And they wouldn’t explain most of the missing mass in the universe, said Kai Martens, a physicist at the University of Tokyo who worked on the experiment. These axions, which appear to be streaming out of the sun, don’t act like the “cold dark matter” that physicists believe fills halos around galaxies. And they would be particles newly brought into being inside the sun, while the bulk of the cold dark matter out there appears to have existed unchanged for billions of years since the early universe.*

Still, it sure seems like there was a signal. It turned up in a dark underground tank of 3.5 tons (3.2 metric tons) of liquid xenon—the XENON1T experiment based at the Gran Sasso National Laboratory in Italy. At least two other physical effects could explain the XENON1T data. However, the researchers tested several theories and found that axions streaming out of our sun were the likeliest explanation for their results.

Physicists who weren’t involved in the experiment have not reviewed the data as of the announcement at 10 a.m. ET today (June 17). Reporters were briefed on the finding before the announcement, but data and paper on the find were not made available.

Live Science shared the XENON collaboration’s press release with two axion experts.

Physicists Announce Potential Dark Matter Breakthrough, Rafi Letzter, Live Science/Scientific American

Read more…

More Alike Than Different...

 

Topics: Astrophysics, Atomic Physics, Cosmology, Philosophy

We are more alike than different. The atoms in our bodies are the same forged in distant stars; Carl Sagan said we are "made of star stuff."

Then: we evolve under ultraviolet light at degree inclinations on the globe, thereby changing the prominence of Melanin in our epidurals. Due to war and conquests, we craft a narrative of what is godly, who is "divine" and who is deviant. Good and evil has a hue or light and darkness. And thus, we craft the seeds of our own self-destruction from ignorance, hubris, racism, snobbery and xenophobia.

Star stuff should be better behaved.

Read more…

Missing Link...

Missing%2BLink%2BBlack%2BHole.PNG
A cosmic homicide in action, with a wayward star being shredded by the intense gravitational pull of a black hole that contains tens of thousands of solar masses in an artist's impression obtained by Reuters April 2, 2020. NASA-ESA/D. Player/Handout via REUTERS.

 

Topics: Astrophysics, Black Holes, Cosmology, General Relativity, Hubble


Using data from the Hubble Space Telescope and two X-ray observatories, the researchers determined that this black hole is more than 50,000 times the mass of our sun and located 740 million light years from Earth in a dwarf galaxy, one containing far fewer stars than our Milky Way.

Black holes are extraordinarily dense objects possessing gravitational pulls so powerful that not even light can escape.

This is one of the few “intermediate-mass” black holes ever identified, being far smaller than the supermassive black holes that reside at the center of large galaxies but far larger than so-called stellar-mass black holes formed by the collapse of massive individual stars.

“We confirmed that an object that we discovered originally back in 2010 is indeed an intermediate-mass black hole that ripped apart and swallowed a passing star,” said University of Toulouse astrophysicist Natalie Webb, a co-author of the study published this week in Astrophysical Journal Letters.

 

Astronomers spot 'missing link' black hole - not too big and not too small
Will Dunham, Reuters Science

Read more…

Geodes...

black_hole_geode_1024.jpg
(Just_Super/iStock)

 

Topics: Black Holes, Cosmology, Dark Energy, Einstein, General Relativity, Gravity


A fifty-year-old hypothesis predicting the existence of bodies dubbed Generic Objects of Dark Energy (GEODEs) is getting a second look in light of a proposed correction to assumptions we use to model the way our Universe expands.

If this new version of a classic cosmological model is correct, some black holes could hide cores of pure dark energy, pushing our Universe apart at the seams.

University of Hawaii astrophysicist Kevin Croker and mathematician Joel Weiner teamed up to challenge the broadly accepted notion that when it comes to the Universe's growing waistline, its contents are largely irrelevant.

"For 80 years, we've generally operated under the assumption that the Universe, in broad strokes, was not affected by the particular details of any small region," said Croker.

"It is now clear that general relativity can observably connect collapsed stars – regions the size of Honolulu – to the behavior of the Universe as a whole, over a thousand billion billion times larger."

Not only could this alternative interpretation of fundamental physics change how we understand the Universe's expansion, but we might need to also consider how that growth might affect compact objects like the cores of collapsing stars.

 

Black Holes May Hide Cores of Pure Dark Energy That Keep The Universe Expanding
Mike McCrae, Science Alert

Read more…

Easy-Peasy...

ymfrWHb64tjhKryuaVm3tX-650-80.jpg
(Image: © Shutterstock)

 

Topics: Black Holes, Cosmology, General Relativity, Wormholes


Everybody wants a wormhole. I mean, who wants to bother traveling the long-and-slow routes throughout the universe, taking tens of thousands of years just to reach yet another boring star? Not when you can pop into the nearest wormhole opening, take a short stroll, and end up in some exotic far-flung corner of the universe.

There's a small technical difficulty, though: Wormholes, which are bends in space-time so extreme that a shortcut tunnel forms, are catastrophically unstable. As in, as soon as you send a single photon down the hole, it collapses faster than the speed of light.

But a recent paper, published to the preprint journal arXiv on July 29, has found a way to build an almost-steady wormhole, one that does collapse but slowly enough to send messages — and potentially even things — down it before it tears itself apart. All you need are a couple of black holes and a few infinitely long cosmic strings.

In principle, building a wormhole is pretty straightforward. According to Einstein's Theory of General Relativity, mass and energy warp the fabric of space-time. And a certain special configuration of matter and energy allows the formation of a tunnel, a shortcut between two otherwise distant portions of the universe.

Unfortunately, even on paper, those wormholes are fantastically unstable. Even a single photon passing through the wormhole triggers a catastrophic cascade that rips the wormhole apart. However, a healthy dose of negative mass — yes, that's matter but with an opposite weight — can counteract the destabilizing effects of regular matter trying to pass through the wormhole, making it traversable.

OK, matter with negative mass doesn't exist, so we need a new plan.

 

Physicists Just Released Step-by-Step Instructions for Building a Wormhole
Paul Sutter, Live Science

Read more…

The Gravity of the Matter...

Black-hole-star.jpg
Testing Einstein: conceptual image showing S0-2 (the blue and green object) as it made its closest approach to the supermassive black hole at the center of the Milky Way. The huge gravitational field of the black hole is illustrated by the distorted grid in space–time. (Courtesy: Nicolle R Fuller/National Science Foundation)

 

Topics: Astrophysics, Black Holes, Cosmology, Einstein, General Relativity


A key aspect of Einstein’s general theory of relativity has passed its most rigorous test so far. An international team led by Tuan Do and Andrea Ghez at the University of California, Los Angeles confirmed the Einstein equivalence principle (EEP) by analyzing the redshift of light from the star S0-2 at its closest approach to Sagittarius A* – the supermassive black hole at the center of the Milky Way. The study combined over 20 years of existing spectroscopic and astrometric measurements of S0-2 with the team’s own observations.

Since Einstein first proposed his general theory of relativity in 1915, the idea has stood up to intense experimental scrutiny by explaining the behaviors of gravitational fields in the solar system, the dynamics of binary pulsars, and gravitational waves emitted by mergers of black holes.

In 2018, the GRAVITY collaboration carried out a particularly rigorous test – observing S0-2 at its closest approach to Sagittarius A* in its 16-year orbit.

As expected, the GRAVITY astronomers observed a characteristic relativistic redshift in light from S0-2. This redshift is a lengthening of the wavelength of the light and arises from both the motion of the star (the Doppler effect) and the EEP. The latter is a consequence of general relativity and predicts a redshift in light from a source that is in a gravitational field such as that of a supermassive black hole.

 

Einstein’s general theory of relativity tested by star orbiting a black hole
Sam Jarman, Physics World

Read more…

There Be Monsters...

Two views of galaxy Markarian 1216. The red image on the left shows X-ray observations conducted by NASA's Chandra X-Ray Observatory, and the yellowish image on the right is composed of optical observations taken by the Hubble Space Telescope. The brighter colors at the center of the Chandra image represent the increased density of hot gas in the galaxy's core.

 

Topics: Astronomy, Astrophysics, Cosmology, Dark Matter


X-ray observations of a peculiar galaxy deep within the constellation Hydra (the Sea Serpent) have revealed more dark matter at its core than expected.

The galaxy is almost as old as the universe itself, representatives from NASA's Chandra X-Ray Observatory said in a statement published Monday (June 3). This celestial body, Markarian 1216, went through a different evolution than typical galaxies and is home to stars that are within 10% of the age of the universe.

To study the dark matter within this compact, elliptically shaped galaxy about 295 million light- years from Earth, researchers conducted new observations with the Chandra spacecraft. Markarian 1216 is packed with more dark matter in its core than researchers expected, according to their findings published June 1.

 

Ancient Galaxy in the 'Sea Serpent' Has More Dark Matter Than Expected, Doris Elin Salazar, Space,com

Read more…

Event Horizon...

Scientists have obtained the first-ever image of a black hole — at center of the galaxy M87. Credit: Event Horizon Telescope collaboration et al.

 

Topics: Astrophysics, Black Holes, Cosmology, Einstein


(Yesterday) At six simultaneous press conferences around the globe, astronomers on Wednesday announced they had accomplished the seemingly impossible: taking a picture of a black hole, a cosmic monster so voracious that light itself cannot escape its clutches.

This historic feat, performed by the Event Horizon Telescope (EHT)—a planet-spanning network of radio observatories—required more than a decade of effort. The project’s name refers to a black hole’s most defining characteristic, an “event horizon” set by the object’s mass and spin beyond which no infalling material, including light, can ever return.

“We have taken the first picture of a black hole,” the EHT project’s director, Sheperd Doeleman, said in a news release. “This is an extraordinary scientific feat accomplished by a team of more than 200 researchers.”

The image unveils the shadowy face of a 6.5-billion-solar-mass supermassive black hole at the core of Messier 87 (M87), a large galaxy some 55 million light-years from Earth in the Virgo galaxy cluster. Such objects are a reflection of Einstein’s theory of general relativity, which predicts that only so much material can be squeezed into any given volume before the overwhelming force of its accumulated gravity causes a collapse—a warp in the fabric of spacetime that swallows itself. Left behind is an almost featureless nothingness that, for lack of better terms, scientists simply call a black hole.

"Gargantua," special effects from the movie, Interstellar, 2014 (Kip Thorne et al guessed right):
Image Source: HDQ Walls dot com

 

At Last, a Black Hole’s Image Revealed, Lee Billings, Scientific American

Read more…

Sagittarius A...

Getty Images


Topics: Astronomy, Astrophysics, Black Holes, Cosmology, Einstein


They've captured our imaginations for decades, but we've never actually photographed a black hole before – until now.

Next Wednesday, at several press briefings around the world, scientists will apparently unveil humanity's first-ever photo of a black hole, the European Space Agency said in a statement. Specifically, the photo will be of "Sagittarius A," the supermassive black hole that's at the center of our Milky Way galaxy.

But aren't black holes, well, black, and thus invisible, so none of our telescopes can "see" them? Yes – therefore the image we're likely to see will be of the "event horizon," the edge of the black hole where light can't escape. [1]

*****


Next week, a collection of countries around the world are going to make a big announcement, and no one is sure exactly what it’s going to be. However, there are some possibilities, and the most exciting one is that they are about to reveal the first-ever photograph of the event horizon of a black hole.

Taking a photo of a black hole is not an easy task. Not only are black holes famous for not letting any light escape, even the nearest known black holes are very far away. The specific black hole astronomers wanted to photograph, Sagittarius A*, lies at the center of our galaxy 25,000 light-years away.

The international Event Horizon Telescope project announced its plan to photograph Sagittarius A* back in 2017, and they enlisted some of the world’s biggest telescopes to help out. The researchers used half a dozen radio telescopes, including the ALMA telescope in Chile and the James Clerk Maxwell telescope in Hawaii, to stare at Sagittarius A* over the past two years.

And while a picture of the black hole itself is impossible, the EHT astronomers were really aiming at the next best thing: the event horizon, the border of the black hole beyond which not even light can escape. At the event horizon, gravity is so strong that light will orbit the black hole like planets orbit stars, and our telescopes should be able to pick that up. [2]
 

1. 'Something no human has seen before': The first-ever photograph of a black hole will likely be unveiled next week, Doyle Rice, USA Today
2. We Might Be About to See the First Ever Photo of a Black Hole, Avery Thomson, Popular Mechanics

Read more…