exoplanets (7)

TNOs and Planet Nine...

planet9cluster.jpg
Over the past decade or so, astronomers have discovered a number of far-flung objects that all have very similar perihelia, meaning they make their closest approaches to the Sun at about the same location in space. One leading theory that attempts to explain the clustering is that a massive and unseen world known as Planet Nine hiding in the outer solar system.

Fauxtoez/WikiMedia Commons

 

Topics: Astronomy, Astrophysics, Exoplanets, Space Exploration


Note: Not an April 1st joke. With the COVID-19 crisis, I literally had to peruse some sites that DIDN'T talk about what we're all living through. It's been rough, thinking about how and when this all ends. I'll try to get my sea legs back to blogging about science. Bear with me. I'm human.

Astronomers have discovered 139 new minor planets orbiting the Sun beyond Neptune by searching through data from the Dark Energy Survey. The new method for spotting small worlds is expected to reveal many thousands of distant objects in coming years — meaning these first hundred or so are likely just the tip of the iceberg.

Taken together, the newfound distant objects, as well as those to come, could resolve one of the most fascinating questions of modern astronomy: Is there a massive and mysterious world called Planet Nine lurking in the outskirts of our solar system?

Neptune orbits the Sun at a distance of about 30 astronomical units (AU; where 1 AU is the Earth-Sun distance). Beyond Neptune lies the Kuiper Belt — a comet-rich band of frozen, rocky objects (including Pluto) that holds dozens to hundreds of times more mass than the asteroid belt. Both within the Kuiper Belt and past its outer edge at 50 AU orbit distant bodies called trans-Neptunian objects (TNOs). Currently, we know of nearly 3,000 TNOs in the solar system, but estimates put the total number closer to 100,000.

As more and more TNOs have been discovered over the years, some astronomers — including Konstantin Batygin and Mike Brown of Caltech — have noticed a small subset of these objects have peculiar orbits. They seem to bunch up in unexpected ways, as if an unseen object is herding these so-called extreme TNOs (eTNOs) into specific orbits. Batygin and Brown — in addition to other groups, like that led by Scott Sheppard of the Carnegie Institution for Science — think these bizarrely orbiting eTNOs point to the existence of a massive, distant world called Planet Nine.

Hypothesized to be five to 15 times the mass of Earth and to orbit some 400 AU (or farther) from the Sun, the proposed Planet Nine would have enough of a gravitational pull that it could orchestrate the orbits of the eTNOs, causing them to cluster together as they make their closest approaches to the Sun.

The problem is that the evidence for Planet Nine is so far indirect and sparse. There could be something else that explains the clumped orbits, or perhaps researchers stumbled on a few objects that just happen to have similar orbits. Discovering more TNOs, particularly beyond the Kuiper Belt, will allow astronomers to find more clues that could point to the location of the proposed Planet Nine — or deny its existence altogether. Of the 139 newly discovered minor planets found in this study, seven are eTNOs, which is a significant addition to a list that numbered around a dozen just a few months ago.

 

Astronomers find 139 new minor planets in the outer solar system
Erica Naone, Astronomy

Read more…

Astronomy's Top Ten 2019...

K218bhabitableexoplanet.jpg
Exoplanet K2-18 b orbits a red dwarf star and has an extended atmosphere containing at least some water vapor, as seen in this artist's concept. The system also contains another exoplanet sitting closer to the star, but it lies inside of the star's habitable zone

 

Topics: Astronomy, Astrophysics, Black Holes, Exoplanets, Hubble


Astronomers have finally uncovered water vapor in the atmosphere of a super-Earth exoplanet orbiting within the habitable zone of its star. The find means that liquid water could also exist on the rocky world's surface, potentially even forming a global ocean.

The discovery, made with NASA's Hubble Space Telescope, serves as the first detection of water vapor in the atmosphere of such a planet. And because the planet, dubbed K2-18 b, likely sports a temperature similar to Earth, the newfound water vapor makes the world one of the most promising candidates for follow-up studies with next-generation space telescopes.

"This is the only planet right now that we know outside the solar system that has the correct temperature to support water, it has an atmosphere, and it has water in it, making this planet the best candidate for habitability that we know right now," lead author Angelos Tsiaras, an astronomer at University College London, said in a press conference.
 
Enceladus.jpg
Researchers created this enhanced view of Enceladus’ south polar region by combining Cassini images taken through infrared, green, and ultraviolet filters. The tiger stripe fractures, the source of the plumes venting gas and dust into space, are prominently visible at center.
NASA/JPL-Caltech/SSI/Lunar and Planetary Institute/Paul Schenk (LPI, Houston)

“In the old time Pallas [Athena] heaved on high Sicily, and on huge Enceladus dashed down the isle, which burns with the burning yet of that immortal giant, as he breathes fire underground.”

 


— Quintus Smyrnaeus, The Fall of Troy

 


Saturn’s sixth-largest moon, Enceladus has a diameter of only 310 miles (500 kilometers), and a mass less than 1/50,000 that of Earth. When it comes to places to look for life, however, Enceladus is at the top of the list, and it’s right in our cosmic backyard.

A bit ignored at first

 


English astronomer William Herschel discovered Enceladus in 1789, but it remained an enigma until the Cassini mission began orbiting Saturn in 2004. Prior to Cassini, Enceladus was a bit ignored. We didn’t know liquid water could exist that far out in the solar system, so why would anyone be that interested in another boring, dead ball of ice?

 


That all changed one year later, when Cassini’s magnetometer (think: fancy compass) detected something strange in Saturn’s magnetic field near Enceladus. This suggested the moon was active. Subsequent passes by Enceladus revealed four massive fissures — dubbed “tiger stripes” — in a hot spot centered on the south pole. And emanating from those cracks was a massive plume of water vapor and ice grains. Enceladus lost its label of being a dead relic of a bygone era and leaped to center stage as a dynamic world with a subsurface ocean.
Read more…

Mapping Titan...

pia21923_cassinivimstitan_main.jpg
These infrared views of Titan peer through the gloom
NASA/JPL-Caltech/Stéphane Le Mouélic, University of Nantes, Virginia Pasek, University of Arizona

 

Topics: Astrophysics, Cassini, Exoplanets, Moon, Space Exploration


Slowly but surely, the surface of Saturn’s strange moon Titan is being revealed. Researchers have made the first map of the geology of Titan’s entire surface, and it will eventually help us figure out what the climate is like there.

Titan’s atmosphere is full of a thick, orange haze that blocks visible light from reaching the surface, making it difficult for spacecraft to take pictures. NASA’s Cassini spacecraft, which orbited Saturn from 2004 to 2017, took radar and infrared data of Titan’s surface, giving researchers a hint of the terrain below.

Rosaly Lopes at NASA’s Jet Propulsion Laboratory in California and her colleagues assembled those observations and placed each area, or unit, into one of six categories: lakes, craters, dunes, plains, hummocky terrain – meaning hills and mountains – and labyrinth, which looks like heavily eroded plateaus. They then made a map of where each of those terrains exists on Titan’s surface.
 

We have the first full map of the weird surface features of Titan
Leah Crane, New Scientist

Read more…

Galactic Armageddon...

456080main1_hst-2010-15-670.jpg
The planet, called WASP-12b, is so close to its sunlike star that it is superheated to nearly 2,800 degrees Fahrenheit and stretched into a football shape by enormous tidal forces. The atmosphere has ballooned to nearly three times Jupiter's radius and is spilling material onto the star. The planet is 40 percent more massive than Jupiter.

 

Topics: Astronomy, Astrophysics, Exoplanets, White Dwarfs


Some rocky exoplanets bear a striking resemblance to Earth, according to Alexandra Doyle, Edward Young and colleagues at the University of California at Los Angeles. The team used the properties of light coming from six white-dwarf stars to calculate how much oxygen, iron and other elements were present in planets that once orbited the stars. Their observations suggest that these planets – which were consumed by their stars long ago – have the same geophysical and geochemical properties as Earth. While astronomers are able to observe rocky exoplanets, working out what they are made of is difficult and this research provides important clues regarding the composition of these Earth-like objects.

White dwarfs are the ancient remnants of stars that had masses less than about 10 Suns. This means that most stars in the Milky Way will eventually become white dwarfs – including the Sun. Many white dwarfs would have had planets, which would have been consumed by the stars at some point in their stellar evolution. The atmosphere of a white dwarf is expected to comprise only the lightest elements – hydrogen and helium – so the presence of heavier substances in the stellar atmosphere such as magnesium, iron and oxygen means that the star has probably ingested rocky planets or asteroids.

 

Doomed exoplanets were much like Earth, Hamish Johnston, Physics World

Read more…

A Year of TESS...

 

Topics: Exoplanets, NASA, Planetary Science, Space Exploration, Star Trek


"Space: the final frontier. These are the voyages of the starship Enterprise. Her five-year mission: to explore strange new worlds. To seek out new life and new civilizations. To boldly go where no one has gone before." (Star Trek: The Captain's Oath)

“Kepler discovered the amazing result that, on average, every star system has a planet or planets around it. TESS takes the next step. If planets are everywhere, let’s find those orbiting bright, nearby stars because they’ll be the ones we can now follow up with existing ground and space-based telescopes, and the next generation of instruments for decades to come.” Padi Boyd, TESS project scientist, NASA GSFC

- HD 21749c, the first Earth-size planet the mission has found. The world orbits a K-class star with about 70 percent of the mass of the Sun, located 53 light years away in the constellation Reticulum, one of two planets identified in this system;

- A number of multi-planet systems, like that around L98-59, which includes a planet (L98-59b) between the size of Earth and Mars, the smallest yet found by TESS. Here the host star is an M-dwarf about a third the mass of the Sun, 35 light years away in the constellation Volans;

- Three exocomets identified in the Beta Pictoris system. A comet’s lightcurve differs significantly from that of a transiting planet because of the extended cometary tail. These discoveries demonstrate the ability of TESS to identify tiny objects around young, bright stars, and should lead to future exocomet detections that can supply information about planet formation;

- Six supernovae occurring in other galaxies, among them ASASSN-18rn, ASASSN-18tb and ATLAS18tne, found before ground-based surveys could identify them.

 

TESS: Concluding First Year of Observations, Paul Gilster, Centauri Dreams

#P4TC: TESS... August 2, 2018

Read more…

Brine Europa...

Salt-laden water welling up from below gives Europa’s fissures and cracks their distinctive color.
Credit: NASA, JPL-Caltech and SETI Institute

 

Topics: Astrobiology, Exoplanets, Planetary Exploration, SETI


The sea sloshing beneath the icy surface of Jupiter’s moon Europa just might be the best incubator for extraterrestrial life in our solar system. And yet it is concealed by the moon’s frozen outer shell—presenting a challenge for astrobiologists who would love nothing more than to peer inside. Luckily they can catch a partial glimpse by analyzing the flavor of the surface. And the results are salty.

A new study published this week in Science Advances suggests that sodium chloride—the stuff of table salt—exists on Europa’s surface. Because the exterior is essentially formed from frozen seawater, the finding suggests that Europa’s hidden sea is drenched in table salt—a crucial fact for constraining the possibilities for life on the alien world.

Not that scientists have tasted a slice of the distant moon. To analyze Europa’s composition, astronomers study the light emanating from its surface, splitting it into a rainbow-like spectrum to search for any telltale absorption or emission lines that reveal the world’s chemistry. There is just one problem: Ordinary table salt is white and thus gives off a featureless spectrum. But harsh radiation—which exists at Europa’s surface in abundance—just might add a dash of color. That much was realized in 2015 when two NASA planetary scientists Kevin Hand and Robert Carlson published a study suggesting the yellowish-brown gunk on Europa might be table salt baked by radiation. To reach that conclusion, Hand and Carlson re-created the conditions on Europa within vacuum chambers—or as Hand calls them, “stainless steel shiny objects that are humming and whizzing.” Next, they placed table salt into those chambers, lowered the pressures and temperatures to simulate Europa’s surface, and blasted the samples with an electron gun to simulate the intense radiation.

 

Water on Europa—with a Pinch of Salt, Shannon Hall, Scientific American

Read more…

Remnants...

An artist's impression of the planetesimal orbiting on a 2-hour period within the gaseous disc around SDSS J1228+1040 (by Mark Garlick).

 

Topics: Astronomy, Astrophysics, Exoplanets, Spectrograph, White Dwarfs


When the hydrogen fuel that keeps a star like our sun burning brightly is exhausted, the star expands into a red giant before collapsing into a hot, dense white dwarf. Although the stellar swelling engulfs nearby planets, theoretical models suggest that some planets and planetary cores up to hundreds of kilometers in diameter can survive the star’s death and fall into closer orbit. But identifying solid bodies around a dim stellar core is difficult. Now Christopher Manser (University of Warwick) and colleagues have used a new spectroscopic method to identify a planetesimal orbiting a white dwarf 400 light-years from our solar system.

Astronomers have discovered most exoplanets—including an asteroid-like body orbiting a white dwarf—via the transit method, identifying periodic dimming as an object passes in front of its host star. But the method requires a lucky geometry of the planetary system’s orbital plane relative to Earth. Manser and his team instead turned to short-cadence optical spectroscopy using data from the 10.4 m Gran Telescopio Canarias in Spain. They focused on one of just a few white dwarfs that, based on metal emission lines in the stellar and disk spectra, are suspected to be surrounded by disks of gas and dust. Minute-by-minute observations over several nights in 2017 and 2018 let the researchers deconstruct the light emanating from the disk and determine how much variation had occurred over a year.

 

A glimpse of a planetary system’s final stages, Rachel Berkowitz, Physics Today

Read more…