nasa (44)

Fly Them to the Moon...

11020023079?profile=RESIZE_710x

The Artemis 2 crew, from left to right: Jeremy Hansen, Reid Wiseman, Victor Glover, and Christina Koch. (NASA TV)

Topics: Astronautics, Astrophysics, International Space Station, NASA, Space Exploration

NASA has selected the four astronauts that will travel to the Moon during the upcoming Artemis 2 mission, which will be humanity’s first crewed return to the Moon in more than 50 years.

The four astronauts are Reid Wiseman, Victor Glover, and Christina Koch of NASA, and Jeremy Hansen of the Canadian Space Agency.

“The Artemis 2 crew represents thousands of people working tirelessly to bring us to the stars,” said NASA Administrator Bill Nelson before announcing the crew during a live event broadcast on NASA TV. “This is their crew. This is our crew. This is humanity’s crew.”

Meet the Four Astronauts Who Will Soon Take a Trip to the Moon, Jake Parks, Discovery Magazine

Related: NC astronaut Christina Koch will be part of NASA Artemis II moon mission, Korie Dean, The Charlotte Observer

Read more…

Class of '78...

10971191458?profile=RESIZE_710x

Topics: African Americans, Diversity in Science, NASA

The inclusion of women and people of color in NASA’s astronaut cadet program was unprecedented — and sometimes met fierce resistance.

The New Guys: The Historic Class of Astronauts That Broke Barriers and Changed the Face of Space Travel, Meredith Bagby, William Morrow (2023)

Growing up in racially segregated South Carolina in the 1950s, Ronald McNair saw door after door slammed in his face. The public pool was for white people only, so he could not learn to swim. When he was nine years old, a librarian called the police on him for trying to borrow calculus books.

McNair fought the racism and went on to study physics at the North Carolina Agricultural and Technical State University in Greensboro — a historically Black institution — and at the Massachusetts Institute of Technology in Cambridge. In 1978, NASA chose him as a finalist to be an astronaut, in the first group to contain women, people of color, and scientists. His pioneering class included Sally Ride, who would become the first US woman in space; Ellison Onizuka, the first Asian American in space; and Guion Bluford, the first African American in space.

With The New Guys, Meredith Bagby, a film producer and former journalist has produced a broad and easily readable narrative about this group of US astronauts. She does not break new ground in outlining their experiences and the team’s role in space history. But she does illuminate the historic nature of their selection — and, significantly, how they helped to shape NASA’s space shuttle program, from its first flight in 1981 until its end in 2011.

NASA’s first astronaut class, chosen in 1959, was the iconic Mercury Seven which included John Glenn, Alan Shepard, and Gus Grissom. The next six groups were similar: all white, male military pilots lionized for having “the right stuff.” Then came the class of 1978. Of the 35 new astronauts, 14 were civilians, 6 were women, and 4 were men of color.

It was a time of huge change for NASA. The Apollo Moon program had wound down, and NASA had set its sights on developing a reusable space plane that would launch like a rocket and land like an airplane. Astronauts on this vehicle would deploy military and scientific satellites into space. It was time for a new type of astronaut for a new type of spaceship.

Breaking through prejudice

Bagby views the shuttle era through the experiences of its astronauts, with a focus on women moving into new roles. They include Ride, a gay woman who remained in the closet while at NASA because the agency would not hire her otherwise; geologist Kathryn Sullivan; physicians Rhea Seddon and Anna Fisher; biochemist Shannon Lucid; and engineer Judith Resnik.

In the late 1970s, the view in much of NASA’s ranks was that the agency had lowered its standards to admit a more diverse class, and the class acquired the soubriquet “Those Fucking New Guys.” John Glenn and Chuck Yeager, the quintessential “right stuff” pilots, were among those who fought against hiring women as astronauts. Opposition from Yeager had probably helped to keep Ed Dwight, a Black test pilot, from joining a previous class.

10971191868?profile=RESIZE_584x

Note: Younger me, off Dr. McNair's left shoulder looking down at the floor. Someone dropped their keys, I reacted, and the faux pas is preserved for all Internet eternity.

Source: https://journalnow.com/news/local/30-things-you-should-know-about-astronaut-ronald-mcnair/article_b6e2357c-8b07-550c-bf19-f4a713047e76.amp.html

How NASA’s breakthrough ‘class of ’78’ changed the face of space travel, Alexandra Witze, Nature

Read more…

Life Detector...

10943744898?profile=RESIZE_710x

An Orbitrap cell. Credit: Ricardo Arevalo

Topics: Astrobiology, Astronautics, Biology, Laser, NASA, Planetary Science, Space Exploration

As space missions delve deeper into the outer solar system, the need for more compact, resource-conserving, and accurate analytical tools have become increasingly critical—especially as the hunt for extraterrestrial life and habitable planets or moons continues.

A University of Maryland–led team developed a new instrument specifically tailored to the needs of NASA space missions. Their mini laser-sourced analyzer is significantly smaller and more resource efficient than its predecessors—all without compromising the quality of its ability to analyze planetary material samples and potential biological activity onsite. The team's paper on this new device was published in the journal Nature Astronomy on January 16, 2023.

Weighing only about 17 pounds, the instrument is a physically scaled-down combination of two important tools for detecting signs of life and identifying compositions of materials: a pulsed ultraviolet laser that removes small amounts of material from a planetary sample and an Orbitrap analyzer that delivers high-resolution data about the chemistry of the examined materials.

"The Orbitrap was originally built for commercial use," explained Ricardo Arevalo, lead author of the paper and an associate professor of geology at UMD. "You can find them in the labs of pharmaceutical, medical and proteomic industries. The one in my own lab is just under 400 pounds, so they're quite large, and it took us eight years to make a prototype that could be used efficiently in space—significantly smaller and less resource-intensive but still capable of cutting-edge science."

The team's new gadget shrinks down the original Orbitrap while pairing it with laser desorption mass spectrometry (LDMS)—techniques that have yet to be applied in an extraterrestrial planetary environment. The new device boasts the same benefits as its larger predecessors but is streamlined for space exploration and onsite planetary material analysis, according to Arevalo.

Small laser device can help detect signs of life on other planets, University of Maryland, Phys.org.

Read more…

At Horizon's Edge...

10923360295?profile=RESIZE_584x

An artist’s concept of New Horizons during the spacecraft’s planned encounter with Pluto and its moon Charon. The craft’s miniature cameras, radio science experiments, ultraviolet and infrared spectrometers, and space plasma experiments would characterize the global geology and geomorphology of Pluto and Charon, map their surface compositions and temperatures, and examine Pluto’s atmosphere in detail. Credit: Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI)

Topics: Astronomy, Astrophysics, NASA, Planetary Science, Space Exploration

Only two spacecraft have ever left our solar system and lived to tell the tale. In 2012 and 2019, NASA’s Voyager 1 and 2 spacecraft respectively broke through the heliopause, the boundary at which our sun’s sphere of influence gives way to the interstellar medium. They have sent back remarkable riches from this distant location, humanity’s first foray into the limitless bounds beyond our solar system’s edge. Hot pursuit is a far more advanced vehicle, sporting improved instruments, updated optics, and even a means to sample the interstellar medium itself. New Horizons was launched from Earth in 2006 on a mission to visit Pluto, arriving in 2015 and revealing incredible details during its all-too-brief flyby. The spacecraft has continued its cruise toward interstellar frontiers ever since. It has now begun its second extended mission. It is soon set to wake up from a deep hibernation, opening a wealth of new scientific opportunities in the outer solar system. “It takes a long time to get to where our spacecraft is,” says Alice Bowman, mission operations manager for New Horizons at the Johns Hopkins University Applied Physics Laboratory (JHUAPL) in Maryland. “When you have a spacecraft that is out in that part of the solar system, it is a huge asset to the scientific community. There are so many unique things that a spacecraft that is out that far can do. We definitely want to take advantage of that.”

For New Horizons, those “unique things” include unprecedented studies of the planets Uranus and Neptune, sampling of the local dust, studies of the background light in the universe, and more. The sum total will be a new phase of the mission that is “really unique and interdisciplinary in nature,” says Alan Stern, the lead on the mission at the Southwest Research Institute (SwRI) in Texas. In October, this two-year second extended mission officially began, but in 2023 it will pick up the pace as the spacecraft exits hibernation and begins its scientific program in earnest. “There were lots of good ideas for how to do things in astrophysics, heliophysics, and planetary science,” Stern says. “We took the very best of those.” There is even the tantalizing possibility of visiting another object in the Kuiper Belt, the region of asteroids and icy objects that lurks beyond Neptune, in which New Horizons has already visited one object—Arrokoth in 2019—after its Pluto encounter. Even without such a possibility, there was more than enough reason for NASA to extend the mission. “New Horizons is at a unique location in the solar system with an amazing suite of functioning instruments on board,” says Becky McCauley Rench, New Horizons program scientist at NASA Headquarters in Washington, D.C. “[It] can provide valuable insights to the heliosphere and the solar wind, astronomical observations of the cosmic background radiation, and valuable data about Uranus and Neptune that can be applied to our knowledge about ice giant planets.”

NASA’s Pluto Spacecraft Begins New Mission at the Solar System’s Edge, Jonathan O'Callaghan, Scientific American

Read more…

Death of Chrysalis...

10817536687?profile=RESIZE_710x

A view of Saturn from NASA's Hubble Space Telescope captures details of its ring system and atmospheric details on June 20, 2019. NASA, ESA, A. Simon (GSFC), M.H. Wong (University of California, Berkeley), and the OPAL Team/Handout via REUTERS

Topics: Astronomy, Astrophysics, NASA, Planetary Science

WASHINGTON, Sept 15 (Reuters) - Call it the case of the missing moon.

Scientists using data obtained by NASA's Cassini spacecraft and computer simulations said on Thursday the destruction of a large moon that strayed too close to Saturn would account both for the birth of the gas giant planet's magnificent rings and its unusual orbital tilt of about 27 degrees.

The researchers named this hypothesized moon Chrysalis and said it may have been torn apart by tidal forces from Saturn's gravitational pull perhaps 160 million years ago - relatively recent compared to the date of the planet's formation more than 4.5 billion years ago.

About 99% of the Chrysalis wreckage appears to have plunged into Saturn's atmosphere while the remaining 1% stayed in orbit around the planet and eventually formed the large ring system that is one of the wonders of our solar system, the researchers said. They chose the name Chrysalis for the moon because it refers to a butterfly's pupal stage before it transforms into its glorious adult form.

"As a butterfly emerges from a chrysalis, the rings of Saturn emerged from the primordial satellite Chrysalis," said Jack Wisdom, a professor of planetary science at the Massachusetts Institute of Technology and lead author of the study published in the journal Science.

Violent death of moon Chrysalis may have spawned Saturn's rings, Will Dunham, Reuters Science

Read more…

WASP-39b and CO2...

10800517078?profile=RESIZE_710x

Researchers detected carbon dioxide in WASP-39b’s atmosphere when the exoplanet crossed in front of its star. The data plot shows a telltale blip where infrared wavelengths from the star’s light were absorbed by carbon dioxide on the exoplanet. Credit: NASA, ESA, CSA, Leah Hustak (STScI), Joseph Olmsted (STScI)

Topics: Astrophysics, Chemistry, ESA, Exoplanets, James Webb Space Telescope, NASA

The James Webb Space Telescope — already famous for its mesmerizing images of the cosmos — has done it again. The telescope has captured the first unambiguous evidence of carbon dioxide in the atmosphere of a planet outside the Solar System.

The finding not only provides tantalizing hints about how the exoplanet formed but is also a harbinger for what’s to come as Webb studies more and more alien worlds. It was reported in a manuscript posted on the preprint server arXiv1, ahead of peer review, and is expected to be published in Nature in the coming days. (Nature’s news team is independent of its journals team.)

The discovery is presented in a data plot with none of the luster of Webb’s previous images — which showed galaxies locked in a cosmic dance and radiant clouds in a stellar nursery. But Jessie Christiansen, an astronomer at the NASA Exoplanet Science Institute at the California Institute of Technology in Pasadena, describes the data as “gorgeous”.

The plot, or spectrum, reveals detailed information about the atmosphere of the exoplanet WASP-39b, called a hot Jupiter by scientists because it has a diameter similar to Jupiter’s but orbits its star much more closely than Mercury orbits the Sun, making it incredibly hot. The planet, which is more than 200 parsecs from Earth, was initially discovered during ground-based observations2 and later detected by NASA’s Spitzer Space Telescope, which operated between 2003 and 2020. Data from the latter suggested3 that WASP-39b’s atmosphere might contain carbon dioxide, but they were inconclusive.

Webb telescope spots CO2 on exoplanet for first time: what it means for finding alien life, Sharron Hall, Nature

Read more…

Studying UAPs...

10748343098?profile=RESIZE_584x

Searches for alien civilizations often involve listening for radio transmissions from distant stars, but the possible extraterrestrial origins of UFOs have some scientists looking closer to home. Credit: Luc Novovitch/Alamy Stock Photo

Topics: Astrophysics, NASA, SETI

I was startled, to say the least, that this story appears in Scientific American, and that NASA and theoretical astrophysicist Avi Loeb is interested in it. The nut job "giggle factor" has given way to curiosity about things humans cannot explain, and that bothers us as a species.

My concern is if the question "are we alone?" has the answer "we are not," the next question is "why Earth?" What if the answer is "because we're someone's territory," and they regard Homo Sapiens (the only race we truly are) as a bipedal herd? That gives for the pilots of UAPs (if any found) humanity the same regard as we give a frog on a dissecting table.

On June 9, with only a few hours' notice, NASA held a press conference to announce a study it was commissioning on unidentified aerial phenomena (UAPs). The acronym is a rebranding of what is more popularly known as unidentified flying objects, or UFOs, a topic usually associated with purported extraterrestrial visitations and government conspiracy theories. The question on the public’s mind was why one of the U.S.’s premier scientific agencies was getting involved in something often considered to be at the farthest fringes of respectability.

Yet the pronouncement also fit in with the suddenly more open-minded zeitgeist regarding UAPs. Last year saw the publication of a much-anticipated report on the Department of Defense’s own investigations into the subject, following the release of first-person accounts and video from U.S. fighter pilots claiming to show encounters with strange objects in the skies. High-profile coverage in mainstream media and open congressional hearings about UAPs have kept the matter circulating in the public realm. A month after the Pentagon’s report came out, theoretical astrophysicist Avi Loeb, former chair of Harvard University’s astronomy department, announced a private initiative called the Galileo Project, which is aimed at searching for potential evidence of alien technology here on Earth.

What NASA can bring to this discussion is as yet unclear. The agency has set aside a slim $100,000 for the nine-month study—less than the typical funding it provides for exploratory studies of unconventional technologies such as space telescopes with kilometer-scale mirrors or interstellar probes propelled by giant laser beams. Helmed by the well-respected Princeton University astrophysicist David Spergel, the investigation intends to identify existing and future data sets scientists could use to advance their understanding of UAPs. Even if it uncovers little of interest, the study’s existence suggests that something the agency once avoided talking about at all costs is on the cusp of becoming an appropriate topic of inquiry.

With New Study, NASA Seeks the Science behind UFOs, Adam Mann, Scientific American

Read more…

HETs...

9802247065?profile=RESIZE_584x

FIG. 1. Temporal evolution of chamber pressure assuming nominal operation for 30 s followed by a 40 s interval with flow rate reduced 100×. The colors correspond to 1 kW, 10 kW, 100 kW, and 1 MW power levels. The process is then repeated.

Topics: Applied Physics, Computer Modeling, NASA, Space Exploration, Spaceflight

Abstract

Hall effect thrusters operating at power levels in excess of several hundreds of kilowatts have been identified as enabling technologies for applications such as lunar tugs, large satellite orbital transfer vehicles, and solar system exploration. These large thrusters introduce significant testing challenges due to the propellant flow rate exceeding the pumping speed available in most laboratories. Even with proposed upgrades in mind, the likelihood that multiple vacuum facilities will exist in the near future to allow long-duration testing of high-power Hall thrusters operating at power levels in excess of 100 kW remains extremely low. In this article, we numerically explore the feasibility of testing Hall thrusters in a quasi-steady mode defined by pulsing the mass flow rate between a nominal and a low value. Our simulations indicate that sub-second durations available before the chamber reaches critical pressure are sufficiently long to achieve the steady-state current and flow field distributions, allowing us to characterize thruster performance and the near plume region.

I. INTRODUCTION

Hall effect thrusters (HETs) are spacecraft electric propulsion (EP) devices routinely used for orbit raising, repositioning, and solar system exploration applications. To date, the highest power Hall thruster flown is the 4.5 kW BPT-4000 launched in 2010 aboard the Advanced EHF satellite1 (which the HET helped to deliver to the correct orbit after a failure of the primary chemical booster), although a 13 kW system is being readied for near-term flight operation as part of the Lunar Gateway,2 and thrusters at 503,4–100 kWs power levels have been demonstrated in the laboratory. Solar cell advancements and a renewed interest in nuclear power have led the aerospace community to consider the use of Hall thrusters operating at even higher power levels. Multi-hundred kW EP systems would offer an economical solution for LEO to GEO orbit raising or for the deployment of an Earth-to-Moon delivery tug, and power levels in excess of 600 kW could be utilized for crewed transport to Mars.5–9 While such power levels could be delivered using existing devices, a single large thruster requires less system mass and has a reduced footprint than a cluster of smaller devices.10

Quasi-steady testing approach for high‐power Hall thrusters, Lubos Brieda, Yevgeny Raitses, Edgar Choueiri, Roger Myers, Michael Keidar, Journal of Applied Physics

Read more…

Uhura to Proctor...

9571223886?profile=RESIZE_400x

Topics: Diversity in Science, NASA, Space Exploration, Spaceflight, SpaceX, Star Trek

Dr. King revealed to Nichols that TOS was the only show that he and his wife, Coretta, allowed their little children to stay up and watch. Further, he told Nichols what the show meant to him personally and detailed the importance of her having created a character with "dignity and knowledge." Nichols took it all in and finally said, “Thank you so much, Dr. King. I’m really going to miss my co-stars.” Dr. King's smile, Nichols recalled, vanished from his face.

"He said, 'What are you talking about?'" the actress explained. "I told him. He said, 'You cannot,' and so help me, this man practically repeated verbatim what Gene said. He said, 'Don’t you see what this man is doing, who has written this? This is the future. He has established us as we should be seen. Three hundred years from now, we are here. We are marching. And this is the first step. When we see you, we see ourselves, and we see ourselves as intelligent and beautiful and proud.' He goes on and I’m looking at him and my knees are buckling. I said, 'I…, I…' And he said, 'You turn on your television and the news comes on and you see us marching and peaceful, you see the peaceful civil disobedience, and you see the dogs and see the fire hoses, and we all know they cannot destroy us because we are there in the 23rd century.'

Nichelle Nichols Remembers Dr. King, the StarTrek.com staff

Note: At this posting, she made history yesterday.

Sian Proctor is making history as the first-ever Black female spacecraft pilot. 

Proctor, a geoscientist, artist, and science communicator, has been paving the way in the space sector for decades. Now, years after being a finalist in NASA's astronaut candidate program back in 2009, she is realizing her dream of becoming an astronaut as she launches to orbit with the Inspiration4 mission tonight (Sept. 15).

While the mission itself is making history as the first all-civilian mission to launch to orbit, Proctor is accomplishing a major first herself as the first Black female spacecraft pilot. 

"I'm really grateful to be here and to have this opportunity," Proctor said Sept. 14 during a news conference with reporters. "There have been three Black female astronauts that have made it to space, and knowing that I'm going to be the fourth means that I have this opportunity to not only accomplish my dream but also inspire the next generation of women of color and girls of color and really get them to think about reaching for the stars and what that means."

Sian Proctor makes history with SpaceX's Inspiration4 as first-ever Black female spacecraft pilot, Chelsea Gohd, Space.com

Read more…

J0030...

9566313665?profile=RESIZE_710x

The pulsar J0030 appears to have two to three hotspots on its southern hemisphere only – finding astronomers didn’t expect.
NASA’s Goddard Space Flight Center/CI Lab
(animation on the page link below)

Topics: Astronomy, Astrophysics, NASA, Neutron Stars, Pulsars

NASA’s NICER instrument reveals that neutron stars are not as simple as we thought.

Pulsars are the lighthouses of the universe. These tiny, compact objects are neutron stars — the remnants of once-massive stars — that spin rapidly, beaming radiation into space. Now, for the first time, astronomers have mapped the surface of a 16-mile-wide pulsar in exquisite detail. The discovery calls into question astronomers’ textbook depiction of pulsar appearance and opens the door to learning more about these extreme objects.

The Neutron star Interior Composition Explorer, or NICER, searches for X-rays from extreme astronomical objects such as pulsars from its perch on the exterior of the International Space Station. Researchers used NICER to observe the pulsar J0030+0451, or J0030 for short, which is located 1,100 light-years away in the constellation Pisces, in a series of papers published in The Astrophysical Journal Letters. Two teams, one led by researchers at the University of Amsterdam and the other by researchers at the University of Maryland, used X-ray light from J0030 to map the pulsar’s surface and calculate its mass. Both teams arrived at a conclusion that was unexpected.

A New Picture

What the teams found presented a different picture: J0030 has two or three hotspots, all of which are located in the southern hemisphere. The researchers at the University of Amsterdam believe the pulsar has one small, circular spot and one thin, crescent-shaped spot spinning around its lower latitudes. The University of Maryland team discovered that the X-rays could be coming from two oval spots in the star’s southern hemisphere, as well as one cooler spot near the star’s south pole.

Neither result is the simple picture astronomers expected, indicating that the pulsar’s magnetic field, which causes the hotspots, is likely even more complex than originally assumed. While the result certainly leaves astronomers wondering, “It tells us NICER is on the right path to help us answer an enduring question in astrophysics: What form does matter take in the ultra-dense cores of neutron stars?” NICER science lead and study co-author Zaven Arzoumanian said in a press release.

Astronomers Map a Neutron Star’s Surface for the First Time, Ignat, I Love the Universe

Read more…

ISAAC...

NASA’s Integrated System for Autonomous and Adaptive Caretaking, or ISAAC, is advancing new technology for robots to take care of spacecraft. Researchers recently demonstrated the tech aboard the International Space Station using Astrobee, NASA’s free-flying robotic assistants.
Credits: NASA/Ames Research Center

 

Topics: International Space Station, NASA, Space Exploration, Spaceflight

 

In April 2021, Bumble, one of the free-flying Astrobee robots aboard the International Space Station, was put to the test to investigate a simulated anomaly. In the simulation, the station’s life support systems detected a high concentration of carbon dioxide. A similar situation, in reality, could be very dangerous for the seven people who are living and working aboard the microgravity laboratory.

 

During the test, the small, cube-shaped robot adeptly navigated the station to find the location designated as a "vent" used for cabin air circulation and used computer vision to automatically detect the foreign object blocking the vent – an "astronaut sock," represented by a printed image of a sock. Then, Bumble called for help to clear the blockage. For its next test, Bumble completed a survey of Bay 6 of the space station’s Japanese Exploration Module, building a high-resolution multi-sensor 3D map. During this journey, Bumble found itself bumping into and untangling itself from stray cables, and coping with simulated space-to-ground communication interruptions. It ultimately persevered and completed its mission objectives, with a little timely help from ground operators.

 

This simulated fault scenario marked the end of the first phase of testing for software designed to enable autonomous operations of a spacecraft’s operating and robotic systems. The software’s name is ISAAC – the Integrated System for Autonomous and Adaptive Caretaking.

 

"ISAAC is far more than just a management tool for our robotics and spacecraft systems," said Trey Smith, the project manager for ISAAC at NASA’s Ames Research Center in California's Silicon Valley. "Our long-term vision is that it can transform a spacecraft into an autonomous robotic system itself."

 

NASA's future Artemis missions to the Moon and beyond will take humans farther than they ever have before – and a host of robotic and mechanical systems will go with them. On the space station, much closer to home, astronauts have been able to stay full time, surpassing 20 years of continuous human presence – something that won’t be possible in deep space for some time. How can future spacecraft operate smoothly without that consistent human touch? ISAAC aims to deliver technologies to enable remote and autonomous caretaking during long periods of time when the astronauts are not aboard to perform maintenance, logistics management, and utilization tasks, as well as when communicating with ground controllers is limited or simply unavailable.

 

Meet ISAAC, Integrating Robots with the Space Stations of the Future, Frank Tavares, NASA's Ames Research Center

 

Read more…

A Voyage In Her Lifetime...

9291180286?profile=RESIZE_710x

Image Source: Link in the article text

 

Topics: International Space Station, Interstellar, NASA, Space Exploration, Spaceflight, Star Trek

 

Light Sails were first mentioned in the year 1610 in a letter by astronomer Johannes Kepler to his friend, Galileo Galilei. “With ships or sails built for heavenly winds, some will venture into that great vastness.” In his character of Benjamin Sisko on Star Trek: Deep Space Nine, Avery Brooks used his Starfleet engineering prowess deciphering ancient text to recreate an ancient Bajoran solar sail in the episode "Explorers." The possibilities have vacillated between science and fiction ever since.

 

I've enjoyed reading the speculation by Avi Loeb, Chair of Harvard University's Department of Astronomy on the Oumuamua object in Extraterrestrial. I've also enjoyed the healthy counter debate, as that's how ideas in science are refined before they become laws, doctrine, or accepted universal theorems.

 

On the "billionaire space race": Eli Musk started it with his SpaceX rocket system. It would be nice in current geopolitical tensions not to rely so much on Russian Soyuz capsules to get to the ISS. Brian Branson and Jeff Bezos have probably opened up space tourism, but in the foreseeable near-future and exorbitant price tag, it will probably be a dalliance of the wealthy. Desktop computers used to cost between $2,000 - 3,000, cell phones irradiating Gordon Gekko's skull in the movie "Wall Street" used to be the size of Canada. Even the fictional Zefram Cochrane needed a financier, Micah Brack, to get Warp One going. Whether that leads to a utopia of limitless energy, the end to poverty, money, life extension, and eliminating inequality is yet to be seen.

 

The article title, Breakthrough Starshot: A voyage to the stars within our lifetimes, Astronomy Magazine, takes into account the bane of our spacefaring existence: mass, quite literally a "drag," and cannot be compensated for by technobabble "inertia dampeners" or artificial gravity. We are currently accelerating at 9.8 meters per square second to the Earth's center, but we're used to it after living here a while. Twenty percent of the speed of light would get a nano solar sail craft propelled by a high-energy laser to Alpha Centauri in twenty years but would turn human passengers (if any were that small) into DNA goo against the bulkhead. Starshot launching in 2060 means my granddaughter will be forty-one, her parents might be grandparents, and I would have to be a spry ninety-eight to witness it. "Our lifetimes" must be humankind, that is if we haven't overextended our resources to make the endeavor fruitless. From the end of the article:

 

But as award-winning Cosmos writer and producer Ann Druyan, a member of the Breakthrough Starshot advisory board, said during a 2016 press conference announcing the initiative: “Science thinks in timescales of billions of years. And yet, we live in a society that only thinks in terms of, generally, the balance sheet of the next quarter or the next election. … So, this kind of thinking that looks at a horizon that’s 35 years away — possibly 20, possibly 50 — is exactly what’s called for now, because it’s this kind of multigenerational enterprise that nets us such great results.”

 

Godspeed, "Little Bit."

 

Read more…

Ganymede...

9062576479?profile=RESIZE_584x

A global view of Ganymede, based on data gathered by NASA’s Voyager 1, Voyager 2, and Galileo spacecraft. Credit: USGS Astrogeology Science Center, Wheaton, NASA and JPL-Caltech

Topics: Astronomy, Astrophysics, NASA, Planetary Science, Space Exploration

Ganymede, get ready for your close-up.

No probe has gotten a good view of Jupiter’s largest moon since 2000 when NASA’s Galileo spacecraft swung past the strange world, which is the largest moon in the whole solar system. But on Monday (June 7),  at 1:35 p.m. EDT (1735 GMT), NASA’s Juno spacecraft will skim just 645 miles (1,038 kilometers) above Ganymede’s surface, gathering a host of observations as it does so.

“Juno carries a suite of sensitive instruments capable of seeing Ganymede in ways never before possible," principal investigator Scott Bolton, a space scientist at the Southwest Research Institute in San Antonio, said in a NASA statement. “By flying so close, we will bring the exploration of Ganymede into the 21st century.”

Ganymede is a fascinating world for scientists. Despite its status as a moon, it’s larger than the tiny planet Mercury and is the only moon to sport a magnetic field, a bubble of charged particles dubbed a magnetosphere. Until now, the only spacecraft to get a good look at Ganymede were NASA’s twin Voyager probes in 1979 and the Galileo spacecraft, which flew past the moon in 2000.

NASA’s Juno Set for Close Encounter with Jupiter’s Moon Ganymede, Meghan Bartels, SPACE.com, Scientific American

Read more…

Sun Quake...

8943583499?profile=RESIZE_710x

The first coronal mass ejection, or CME, observed by the Solar Orbiter Heliospheric Imager (SoloHI) appears as a sudden gust of white (the dense front from the CME) that expands into the solar wind. This video uses different images, created by subtracting the pixels of the previous image from the current image to highlight changes. The missing spot in the image on the far right is an overexposed area where light from the spacecraft solar array is reflected into SoloHI’s view. The little black and white boxes that blip into view are telemetry blocks – an artifact from compressing the image and sending it back down to Earth.
Credits: ESA & NASA/Solar Orbiter/SoloHI team/NRL

Topics: Astronomy, Astrophysics, ESA, Heliophysics, NASA

For the new Sun-watching spacecraft, the first solar eruption is always special.

On February 12, 2021, a little more than a year from its launch, the European Space Agency, and NASA’s Solar Orbiter caught sight of this coronal mass ejection or CME. This view is from the mission’s SoloHI instrument — short for Solar Orbiter Heliospheric Imager — which watches the solar wind, dust, and cosmic rays that fill the space between the Sun and the planets.

It's a brief, grainy view: Solar Orbiter’s remote sensing won’t enter full science mode until November. SoloHI used one of its four detectors at less than 15% of its normal cadence to reduce the amount of data acquired. Still, a keen eye can spot the sudden blast of particles, the CME, escaping the Sun, which is off-camera to the upper right. The CME starts about halfway through the video as a bright burst – the dense leading edge of the CME – and drifts off-screen to the left.

For SoloHI, catching this CME was a happy accident. At the time the eruption reached the spacecraft, Solar Orbiter had just passed behind the Sun from Earth’s perspective and was coming back around the other side. When the mission was being planned, the team wasn’t expecting to be able to record any data during that time.

A New Space Instrument Captures Its First Solar Eruption, Miles Hatfield, NASA

Read more…

40 Years Since STS-1...

8787392460?profile=RESIZE_584x

The first mission of the Space Shuttle Program, STS-1, blasts off from launch pad 39A on April 12, 1981, attempting to kick off a new era of rapid access to space.

Topics: History, NASA, Space Exploration, Spaceflight, Space Shuttle

In April 1981, John Young — America’s premier astronaut and one of only 12 people to ever walk on the Moon — was training with co-pilot Bob Crippen for STS-1, the maiden voyage of the space shuttle Columbia. Though eager, Young harbored no illusions that he might never return from this first mission of the Space Shuttle Program.

After rocketing into space, Columbia aimed to circle our planet 36 times over two days. But then, unlike the previous spacecraft, it would glide back to Earth, landing on a runway like an airplane. NASA hoped its reusable fleet of four shuttles — Atlantis, Challenger, Discovery, and Columbia — would launch weekly with crews of up to seven, allowing more rapid access to space than ever before. The Space Shuttle Program promised to both revolutionize and routinize spaceflight.

But, as with all cutting-edge technologies, the risks were severe. A month before STS-1, as Columbia sat on Pad 39A at the Kennedy Space Center in Florida, several technicians were asphyxiated by nitrogen fumes while working in the shuttle’s aft fuselage. Two of them later succumbed to their injuries. The accident served as a deadly reminder that spaceflight is a dangerous business, even when still on Earth.

40 years since the first space shuttle mission, STS-1, Ben Evans, Astronomy

Read more…

Snaps From Perseverance...

8656842259?profile=RESIZE_584x

Combining two images, this mosaic shows a close-up view of the rock target named “Yeehgo” from the SuperCam instrument on NASA’s Perseverance rover on Mars. The component images were taken by SuperCam’s Remote Micro-Imager (RMI). To be compatible with the rover’s software, “Yeehgo” is an alternative spelling of “Yéigo,” the Navajo word for diligent.
Credits: NASA/JPL-Caltech/LANL/CNES/CNRS/ASU/MSSS
Read more…

Touchdown...

 

Topics: Mars, NASA, Perseverance, Space Exploration, Spaceflight

Editor's Note: This release was updated on Feb. 22 to correct the metric unit for the speed at which the rover's wheels made contact with the surface to kph.

A new video from NASA’s Mars 2020 Perseverance rover chronicles major milestones during the final minutes of its entry, descent, and landing (EDL) on the Red Planet on Feb. 18 as the spacecraft plummeted, parachuted, and rocketed toward the surface of Mars. A microphone on the rover also has provided the first audio recording of sounds from Mars.

NASA’s Mars Perseverance Rover Provides Front-Row Seat to Landing, First Audio Recording of Red Planet

Read more…

Aiming the Archer...

8520807892?profile=RESIZE_710x

The 18 members of NASA's Artemis Team, from top left to bottom right: Joe Acaba, Kayla Barron, Raja Chari, Matthew Dominick, Victor Glover, Woody Hoburg, Jonny Kim, Christina Koch, Kjell Lindgren, Nicole Mann, Anne McClain, Jessica Meir, Jasmin Moghbeli, Kate Rubins, Frank Rubio, Scott Tingle, Jessica Watkins and Stephanie Wilson.  (Image credit: NASA via collectSPACE.com)

Topics: Diversity in Science, Moonbase, NASA, Space Exploration, Spaceflight

Artemis, in Greek religion, the goddess of wild animals, the hunt, and vegetation, and of chastity and childbirth; she was identified by the Romans with Diana. Artemis was the daughter of Zeus and Leto and the twin sister of Apollo. Source: Britannica

The Biden administration's crucial first 100 days in office now includes a big human spaceflight pledge.

White House Press Secretary Jen Psaki said Thursday (Feb. 4) that President Joe Biden will carry on the Artemis program to land humans on the moon in the coming years. Artemis began under Biden's predecessor, then-President Donald Trump. 

"Through the Artemis program, the United States government will work with industry and international partners to send astronauts to the surface of the moon — another man and a woman to the moon," Psaki told reporters in a White House press briefing Thursday.

"Certainly, we support this effort and endeavor," she added.

Psaki's comments, which were in answer to a reporter's question, did not mention NASA's 2024 target for the first crewed Artemis moon landing, a deadline set by the Trump administration. Last year, a bipartisan effort in the U.S. House of Representatives sought to push that landing mission to 2028 instead, in line with NASA's previous goals.

US still committed to landing Artemis astronauts on the moon, White House says, Elizabeth Howell, Space.com

Read more…

High Flight...

8455028878?profile=RESIZE_710x

In this illustration, NASA's Ingenuity Mars Helicopter stands on the Red Planet's surface as NASA's Perseverance rover (partially visible on the left) rolls away.Credits: NASA/JPL-Caltech

Topics: Mars, NASA, Planetary Science, Space Exploration, Spaceflight

"High Flight" by John Gillespie Magee, Jr.

Ingenuity, a technology experiment, is preparing to attempt the first powered, controlled flight on the Red Planet.

When NASA’s Perseverance rover lands on Mars on Feb. 18, 2021, it will be carrying a small but mighty passenger: Ingenuity, the Mars Helicopter.

The helicopter, which weighs about 4 pounds (1.8 kilograms) on Earth and has a fuselage about the size of a tissue box, started out six years ago as an implausible prospect. Engineers at NASA’s Jet Propulsion Laboratory in Southern California knew it was theoretically possible to fly in Mars’ thin atmosphere, but no one was sure whether they could build a vehicle powerful enough to fly, communicate, and survive autonomously with the extreme restrictions on its mass.

Then the team had to prove in Earthbound tests that it could fly in a Mars-like environment. Now that they’ve checked off those objectives, the team is preparing to test Ingenuity in the actual environment of Mars.

“Our Mars Helicopter team has been doing things that have never been done before – that no one at the outset could be sure could even be done,” said MiMi Aung, the Ingenuity project manager at JPL “We faced many challenges along the way that could have stopped us in our tracks. We are thrilled that we are now so close to demonstrating – on Mars – what Ingenuity can really do.”

Ingenuity survived the intense vibrations of launch on July 30, 2020, and has passed its health checks as it waits to plunge with Perseverance through the Martian atmosphere. But the helicopter won’t attempt its first flight for more than a month after landing: Engineers for the rover and helicopter need time to make sure both robots are ready.

6 Things to Know About NASA’s Mars Helicopter on Its Way to Mars

Read more…

Lattice Confinement Fusion...

8445465476?profile=RESIZE_710x

Illustration of the main elements of the lattice confinement fusion process observed. In Part (A), a lattice of erbium is loaded with deuterium atoms (i.e., erbium deuteride), which exist here as deuterons. Upon irradiation with a photon beam, a deuteron dissociates, and the neutron and proton are ejected. The ejected neutron collides with another deuteron, accelerating it as an energetic “d*” as seen in (B) and (D). The “d*” induces either screened fusion (C) or screened Oppenheimer-Phillips (O-P) stripping reactions (E). In (C), the energetic “d*” collides with a static deuteron “d” in the lattice, and they fuse together. This fusion reaction releases either a neutron and helium-3 (shown) or a proton and tritium. These fusion products may also react in subsequent nuclear reactions, releasing more energy. In (E), a proton is stripped from an energetic “d*” and is captured by an erbium (Er) atom, which is then converted to a different element, thulium (Tm). If the neutron instead is captured by Er, a new isotope of Er is formed (not shown).

Topics: Astrophysics, NASA, Nuclear Fusion, Propulsion, Space Exploration, Spaceflight

A team of NASA researchers seeking a new energy source for deep-space exploration missions recently revealed a method for triggering nuclear fusion in the space between the atoms of a metal solid.

Their research was published in two peer-reviewed papers in the top journal in the field, Physical Review C, Volume 101 (April 2020): “Nuclear fusion reactions in deuterated metals” and “Novel nuclear reactions observed in bremsstrahlung-irradiated deuterated metals.”

Nuclear fusion is a process that produces energy when two nuclei join to form a heavier nucleus. “Scientists are interested in fusion because it could generate enormous amounts of energy without creating long-lasting radioactive byproducts,” said Theresa Benyo, Ph.D., of NASA’s Glenn Research Center. “However, conventional fusion reactions are difficult to achieve and sustain because they rely on temperatures so extreme to overcome the strong electrostatic repulsion between positively charged nuclei that the process has been impractical.

Called Lattice Confinement Fusion, the method NASA revealed accomplishes fusion reactions with the fuel (deuterium, a widely available non-radioactive hydrogen isotope composed of a proton, neutron, and electron, and denoted “D”) confined in the space between the atoms of a metal solid. In previous fusion research such as inertial confinement fusion, fuel (such as deuterium/tritium) is compressed to extremely high levels but for only a short, nano-second period of time, when fusion can occur. In magnetic confinement fusion, the fuel is heated in a plasma to temperatures much higher than those at the center of the Sun. In the new method, conditions sufficient for fusion are created in the confines of the metal lattice that is held at ambient temperature. While the metal lattice, loaded with deuterium fuel, may initially appear to be at room temperature, the new method creates an energetic environment inside the lattice where individual atoms achieve equivalent fusion-level kinetic energies.

NASA Detects Lattice Confinement Fusion

 

Read more…