BLOGS

mars (6)

Going Vertical...

Czech%2BVertical2.PNG
Czech scientists have opened a lab to experiment growing food for environments with extreme conditions and lack of water, such as Mars.

 

Topics: Climate Change, Mars, NASA, Space Exploration


PRAGUE (Reuters) - Czech scientists have opened a lab to experiment growing food for environments with extreme conditions and lack of water, such as Mars.

The “Marsonaut” experiment by scientist Jan Lukacevic, 29, and his team at the Prague University of Life Sciences is based on aeroponics - growing plants in the air, without soil, and limiting water use to a minimum.

The plants grow horizontally from a vertical unit and are stacked one above the other to minimize space. Researchers experiment with light and temperature changes, Lukacevic said.

The team has already succeeded in growing mustard plants, salad leaves, radishes and herbs like basil and mint.

Scientists ate their first harvest last week.

“They taste wonderful, because they grow in a controlled environment and we supply them with bespoke nutrients,” said Lukacevic.

 

Czech lab grows mustard plants for Mars
Reporting by Jiri Skacel; Writing by Jan Lopatka; Editing by Alexandra Hudson and Dan Grebler, Reuters Science

Read more…

Olympus Mons and Beyond...

XNRcoHujh5mZHmPQZzYbgH-650-80.jpg
Olympus Mons, NASA/MOLA Science Team/ O. de Goursac, Adrian Lark

Topics: Mars, Planetary Science, Space Exploration, Spaceflight


Olympus Mons is the most extreme volcano in the solar system. Located in the Tharsis volcanic region, it's about the same size as the state of Arizona, according to NASA. Its height of 16 miles (25 kilometers) makes it nearly three times the height of Earth's Mount Everest, which is about 5.5 miles (8.9 km) high.

Olympus Mons is a gigantic shield volcano, which was formed after lava slowly crawled down its slopes. This means that the mountain is probably easy for future explorers to climb, as its average slope is only 5 percent. At its summit is a spectacular depression some 53 miles (85 km) wide, formed by magma chambers that lost lava (likely during an eruption) and collapsed.

Mars is a planet mostly shaped by wind these days, since the water evaporated as its atmosphere thinned. But we can see extensive evidence of past water, such as regions of "ghost dunes" found in Noctis Labyrinthus and Hellas basin. Researchers say these regions used to hold dunes that were tens of meters tall. Later, the dunes were flooded by lava or water, which preserved their bases while the tops eroded away.

Old dunes such as these show how winds used to flow on ancient Mars, which in turn gives climatologists some hints as to the ancient environment of the Red Planet. In an even more exciting twist, there could be microbes hiding in the sheltered areas of these dunes, safe from the radiation and wind that would otherwise sweep them away.

 

Touring Mars, Elizabeth Howell, Space.com

Read more…

Shake, Rattle and Roar...

Starhopper.PNG
SpaceX's Mars Starship prototype "Starhopper" hovers over its launchpad during a test flight in Boca Chica, Texas, U.S. August 27, 2019. REUTERS/Trevor Mahlmann

 

Topics: Mars, NASA, Space Exploration, Spaceflight


(Reuters) - SpaceX test-launched an early prototype of the company’s Mars rocket on Tuesday, unnerving residents near the Texas site and clearing another key hurdle in billionaire entrepreneur Elon Musk’s interplanetary ambitions.

After the launch, Musk congratulated engineers from SpaceX, short for Space Exploration Technologies Corp, and posted a photo of Starhopper touching down on its landing pad with billowing clouds of dust and sand rising from the ground.

“One day Starship will land on the rusty sands of Mars,” Musk tweeted.

The prototype, dubbed Starhopper, slowly rose about 500 feet (152 m) off its launch pad in Brownsville, Texas, and propelled itself some 650 feet (198 m) eastward onto an adjacent landing platform, completing a seemingly successful low-altitude test of SpaceX’s next-generation Raptor engine.

The Raptor is designed to power Musk’s forthcoming heavy-lift Starship rocket, a reusable two-stage booster taller than the Statue of Liberty that is expected to play a central role in Musk’s interplanetary space travel objectives, including missions to Mars.

 

SpaceX's Mars rocket prototype rattles nearby residents in Texas flight test
Joey Roulette, Reuters Science

Read more…

Half the Time...

M5wa8TRr2ExuR49BtVrorK-650-80.jpg
An illustration of a spacecraft powered by nuclear thermal propulsion. (Image: © NASA/Marshall)

 

Topics: Mars, NASA, Nuclear Fission, Space Exploration, Spaceflight


Humanity's next giant leap could be enabled by next-gen nuclear tech, NASA Administrator Jim Bridenstine said.

During the sixth meeting of the National Space Council (NSC) today (Aug. 20), the NASA chief lauded the potential of nuclear thermal propulsion, which would harness the heat thrown off by fission reactions to accelerate propellants such as hydrogen to tremendous speeds.

Spacecraft powered by such engines could conceivably reach Mars in just three to four months — about half the time of the fastest possible trip in a vehicle with traditional chemical propulsion, said NSC panelist Rex Geveden, the president and CEO of BWX Technologies Inc.

And that's a big deal for NASA, which is working to get astronauts to Mars in the 2030s.

"That is absolutely a game-changer for what NASA is trying to achieve," Bridenstine said. "That gives us an opportunity to really protect life, when we talk about the radiation dose when we travel between Earth and Mars."

 

Nuclear Propulsion Could Be 'Game-Changer' for Space Exploration, NASA Chief Says
Mike Wall, Space.com

Read more…

Mars 2020...

When I test a vacuum, I just sprinkle oats all over the floor. When NASA tests one, you get this.

NASA/JPL-Caltech

 

Topics: Mars, NASA, Space Exploration, Spaceflight


NASA will leave no Martian rock unturned as it prepares the next Mars robot for the chaos of space travel and landing on the red planet.

Over the last two months, the Mars 2020 spacecraft has been subjected to a number of extreme tests designed to ensure it can withstand an intense rocket launch and the extremes of space. NASA's Jet Propulsion Laboratory has put the futuristic craft through "acoustic and thermal vacuum" testing -- and it has passed with flying colors.

The test involve blasting the spacecraft with sound levels as high as 150 decibels -- the type of levels you'd hear standing next to a jet at take-off -- to replicate the environment of a launch, according to Andy Rose, manager of JPL's environmental test facilities.

After the sound blast tests were performed six times, NASA put the Mars 2020 rover through a brutal test that replicates the vacuum of space. That required the spacecraft to be transported to the Space Simulator Facility and suspended in midair, as seen in the above image.

 

Mars 2020 spacecraft subjected to brutal tests as it prepares for launch, Jackson Ryan, CNET

Read more…

Mars Quake...

Model of the spaceship Insight, NASA's first robotic lander, dedicated to study the deep interior of Mars. REUTERS/Mike Blake/File Photo

 

Topics: Geophysics, Mars, NASA, Planetary Exploration


Finals are over. I'll be with our new granddaughter and her parents next week, along with working on my thesis, following up on my PhD application and changing diapers. My posts will be sporadic since I'll be on the road. I'll catch up.

The breakthrough came nearly five months after InSight, the first spacecraft designed specifically to study the deep interior of a distant world, touched down on the surface of Mars to begin its two-year seismological mission on the red planet.

The faint rumble characterized by JPL scientists as a likely marsquake, roughly equal to a 2.5 magnitude earthquake, was recorded on April 6 - the lander’s 128th Martian day, or sol.

It was detected by InSight’s French-built seismometer, an instrument sensitive enough to measure a seismic wave just one-half the radius of a hydrogen atom.

The lunar and Martian surfaces are extremely quiet compared with Earth, which experiences constant low-level seismic noise from oceans and weather as well as quakes that occur along subterranean fault lines created by shifting tectonic plates in the planet’s crust.

Mars and the moon lack tectonic plates. Their seismic activity is instead driven by a cooling and contracting process that causes stress to build up and become strong enough to rupture the crust.

Three other apparent seismic signals were picked up by InSight on March 14, April 10 and April 11 but were even smaller and more ambiguous in origin, leaving scientists less certain they were actual marsquakes.

 

NASA probe detects likely 'marsquake' - an interplanetary first
Joey Roulette, Reuters Science

Read more…