esa (6)

Mars' Summer Solstice...

13357428282?profile=RESIZE_710x

The hills in Mars' Australe Scopuli region, located near the planet's south pole, are covered in carbon dioxide ice. The darker areas are layers of dust. (Image credit: ESA/DLR/FU Berlin)

Topics: Astrophysics, Environment, ESA, Mars, NASA, Planetary Science, Space Exploration

Snow dots the Martian landscape in these images from ESA's Mars Express orbiter and NASA's Mars Reconnaissance Orbiter.

Hoping for a white Christmas this year? Well, even if there's no snow where you live, at least you can enjoy these images of a "winter" wonderland on Mars.

Taken by the German-built High-Resolution Stereo Camera (HRSC) on the European Space Agency's (ESA) Mars Express orbiter in June 2022, and by NASA's NASA's Mars Reconnaissance Orbiter using its High-Resolution Imaging Science Experiment (HiRISE) camera on September 2022, these images showcase what appears to be a snowy landscape in the Australe Scopuli region of Mars, near the planet's south pole.

But the "snow" seen here is quite different from what we have on Earth.

In fact, it's carbon dioxide ice, and at Mars' south pole, there's a 26-foot-thick (8-meter-thick) layer of it year-round. (These images were actually taken near the summer solstice, not the winter one — it's very cold here all year long.)

So what looks like a beautiful pastoral winter scene in these Mars Express images is actually a dynamic summer scene, where gas jets spew dust across the surface. Hey, at least it's still cold outside — just a casual -193°F (-125°C).

Mars orbiters witness a 'winter wonderland' on the Red Planet (photos), Brett Tingley, Space.com

Read more…

Valentina Tereshkova...

12066449293?profile=RESIZE_584x

Valentina Tereshkova. Credit: ESA

Topics: Astronautics, ESA, History, NASA, Space Exploration, Spaceflight, Women in Science

The first female cosmonaut flew years before NASA put a man on the Moon and decades before any other country would send a woman into orbit.

On a drab Sunday in Moscow in November 1963, a dark-suited man stood beside his veiled bride, whose bashful smile betrayed the merest hint of nerves. Despite the extraordinarily lavish surroundings of the capital’s Wedding Palace, it might have been any normal wedding, but for one thing: Both groom and bride were cosmonauts, members of Russia’s elite spacefaring fraternity.

Two years earlier, that bride, Valentina Tereshkova, had been a factory seamstress and amateur parachutist with more than 100 jumps to her name when she’d volunteered for the cosmonaut program. Now, the 26-year-old, whom TIME magazine dubbed “a tough-looking Ingrid Bergman,” was among the most famous women in the world, an accolade she had earned just months ago by becoming the first female to leave the planet.

Sixty years on from her pioneering Vostok 6 mission, more than 70 women from around the globe have followed in Tereshkova’s footsteps, crossing that ethereal boundary between ground and space. Some have commanded space missions, helmed space stations, made spacewalks, spent more than a cumulative year of their lives in orbit, and even flown with a prosthesis. And women from Britain, Iran, and South Korea have become their countries’ first national astronauts, ahead of their male counterparts.

60 years ago today, Valentina Tereshkova launched into space, Ben Evans, Astronomy

Read more…

WASP-39b and CO2...

10800517078?profile=RESIZE_710x

Researchers detected carbon dioxide in WASP-39b’s atmosphere when the exoplanet crossed in front of its star. The data plot shows a telltale blip where infrared wavelengths from the star’s light were absorbed by carbon dioxide on the exoplanet. Credit: NASA, ESA, CSA, Leah Hustak (STScI), Joseph Olmsted (STScI)

Topics: Astrophysics, Chemistry, ESA, Exoplanets, James Webb Space Telescope, NASA

The James Webb Space Telescope — already famous for its mesmerizing images of the cosmos — has done it again. The telescope has captured the first unambiguous evidence of carbon dioxide in the atmosphere of a planet outside the Solar System.

The finding not only provides tantalizing hints about how the exoplanet formed but is also a harbinger for what’s to come as Webb studies more and more alien worlds. It was reported in a manuscript posted on the preprint server arXiv1, ahead of peer review, and is expected to be published in Nature in the coming days. (Nature’s news team is independent of its journals team.)

The discovery is presented in a data plot with none of the luster of Webb’s previous images — which showed galaxies locked in a cosmic dance and radiant clouds in a stellar nursery. But Jessie Christiansen, an astronomer at the NASA Exoplanet Science Institute at the California Institute of Technology in Pasadena, describes the data as “gorgeous”.

The plot, or spectrum, reveals detailed information about the atmosphere of the exoplanet WASP-39b, called a hot Jupiter by scientists because it has a diameter similar to Jupiter’s but orbits its star much more closely than Mercury orbits the Sun, making it incredibly hot. The planet, which is more than 200 parsecs from Earth, was initially discovered during ground-based observations2 and later detected by NASA’s Spitzer Space Telescope, which operated between 2003 and 2020. Data from the latter suggested3 that WASP-39b’s atmosphere might contain carbon dioxide, but they were inconclusive.

Webb telescope spots CO2 on exoplanet for first time: what it means for finding alien life, Sharron Hall, Nature

Read more…

Sun Quake...

8943583499?profile=RESIZE_710x

The first coronal mass ejection, or CME, observed by the Solar Orbiter Heliospheric Imager (SoloHI) appears as a sudden gust of white (the dense front from the CME) that expands into the solar wind. This video uses different images, created by subtracting the pixels of the previous image from the current image to highlight changes. The missing spot in the image on the far right is an overexposed area where light from the spacecraft solar array is reflected into SoloHI’s view. The little black and white boxes that blip into view are telemetry blocks – an artifact from compressing the image and sending it back down to Earth.
Credits: ESA & NASA/Solar Orbiter/SoloHI team/NRL

Topics: Astronomy, Astrophysics, ESA, Heliophysics, NASA

For the new Sun-watching spacecraft, the first solar eruption is always special.

On February 12, 2021, a little more than a year from its launch, the European Space Agency, and NASA’s Solar Orbiter caught sight of this coronal mass ejection or CME. This view is from the mission’s SoloHI instrument — short for Solar Orbiter Heliospheric Imager — which watches the solar wind, dust, and cosmic rays that fill the space between the Sun and the planets.

It's a brief, grainy view: Solar Orbiter’s remote sensing won’t enter full science mode until November. SoloHI used one of its four detectors at less than 15% of its normal cadence to reduce the amount of data acquired. Still, a keen eye can spot the sudden blast of particles, the CME, escaping the Sun, which is off-camera to the upper right. The CME starts about halfway through the video as a bright burst – the dense leading edge of the CME – and drifts off-screen to the left.

For SoloHI, catching this CME was a happy accident. At the time the eruption reached the spacecraft, Solar Orbiter had just passed behind the Sun from Earth’s perspective and was coming back around the other side. When the mission was being planned, the team wasn’t expecting to be able to record any data during that time.

A New Space Instrument Captures Its First Solar Eruption, Miles Hatfield, NASA

Read more…

SABRE...

8038734452?profile=RESIZE_710x

Courtesy: Reaction Engines

 

Topics: Aerodynamics, ESA, NASA, Space Exploration, Spaceflight

 

The pursuit, exploration, and utilization of the space environment can be misinterpreted as a luxury. History portrays space as an exclusive domain for global powers looking to demonstrate their prowess through technological marvels, or the stage for far-off exploration and scientific endeavor with little impact on daily life. However, the benefits of space are already woven into our everyday routines and provide utilities and resources on which society has grown dependent. If these were suddenly to disappear and the world was to experience just “a day without space”, the consequences would be evident to all.

 

The utilization of space is set to become more important still. A new vision for the future is starting to emerge that will feature even more innovative uses of space, ranging from space-based manufacturing and energy production to global Internet connectivity. Space-debris management is also receiving greater focus alongside lunar and Martian exploration, and even space tourism.

 

While some of these new innovations may sound like they are confined to the realm of science fiction, there are already companies furthering the technology to turn them into reality.

 

Conventional rocket vehicles are propelled by a fuel (liquid hydrogen, kerosene, or methane) and an oxidizer (liquid oxygen) carried within the vehicle body. When the fuel and oxidizer combust, mass is projected out of the back of the rocket, creating thrust. However, this approach – and especially the use of heavy onboard liquid oxygen – is constrained by Tsiolkovsky’s rocket equation. It basically tells us that everything carried onboard a vehicle has a penalty in the form of the additional propellant, and structural mass of the vehicle needed to get it off the ground. In other words, this approach hampers mission performance, mission payload, and mission time.

8038735469?profile=RESIZE_710x

A concept image of the Reaction Engine’s Synergetic Air-Breathing Rocket Engine (SABRE).

 

SABRE, on the other hand, is a hybrid air-breathing rocket engine. During the atmospheric segment of its ascent, it will use oxygen from the atmosphere instead of carrying it inside the vehicle, before switching to onboard oxygen upon leaving the atmosphere. A SABRE-powered launch vehicle will therefore have a lower mass for a given payload than a conventional rocket vehicle. This mass benefit can be traded for systems that will enable reusability and aircraft-like traits, such as wings, undercarriage, and thermal-protection systems – all the features needed to fly the same vehicle over and over again, achieving hundreds of launches.

 

Air-breathing rocket engines: the future of space flight, Oliver Nailard, Physics World

 

 

Read more…

It Takes a Village...

ESAMoonVillageCutaway.jpg
This cutaway shows the interior of a 3D printed section of ESA's planned Moon Village.

 

Topics: ESA, Moon, NASA, Space Exploration, Spaceflight


We've all fantasized of visiting somewhere exotic. For most of us, that dream spot is somewhere on Earth. But for some, the ultimate must-see destination isn't on our planet at all.

NASA is currently planning a series of 37 rocket launches, both robotic and crewed, that will culminate with the 2028 deployment of the first components for along-term lunar base, according to recently leaked documents obtained by Ars Technica. An outpost on the Moon is surely an exciting prospect for both science geeks and prospective solar-system sightseers, but some believe NASA’s timeline is a too ambitious to be realistic.

However, unlike NASA, who not long ago adjusted their sights from Mars mission to a return to the Moon, the European Space Agency (ESA) has already spent almost five years quietly planning a permanent lunar settlement. And while building it may take a few decades, if done right, it could serve the entire world — sightseers included — for many more decades to come.

 

Moon Village: Humanity's first step toward a lunar colony?
Jake Parks, Astronomy Magazine

Read more…