black holes (8)

Black Holes and Dark Matter...

12677224252?profile=RESIZE_710x

Artist's impression of a microlensing event caused by a black hole observed from Earth toward the Large Magellanic Cloud. The light of a background star located in the LMC is bent by a putative primordial black hole (lens) in the Galactic halo and magnified when observed from the Earth. Microlensing causes very characteristic variation of brightness of the background star, enabling the determination of the lens's mass and distance. Credit: J. Skowron / OGLE. Background image of the Large Magellanic Cloud: generated with bsrender written by Kevin Loch, using the ESA/Gaia database

Topics: Astronomy, Astrophysics, Black Holes, Dark Matter

The gravitational wave detectors LIGO and Virgo have detected a population of massive black holes whose origin is one of the biggest mysteries in modern astronomy. According to one hypothesis, these objects may have formed in the very early universe and may include dark matter, a mysterious substance filling the universe.

A team of scientists from the OGLE (Optical Gravitational Lensing Experiment) survey from the Astronomical Observatory of the University of Warsaw have announced the results of nearly 20-year-long observations indicating that such massive black holes may comprise at most a few percent of dark matter. Another explanation, therefore, is needed for gravitational wave sources. The results of the research were published in a study in Nature and a study in The Astrophysical Journal Supplement Series.

Various astronomical observations indicate that ordinary matter, which we can see or touch, comprises only 5% of the total mass and energy budget of the universe. In the Milky Way, for every 1 kg of ordinary matter in stars, there is 15 kg of dark matter, which does not emit any light and interacts only by means of its gravitational pull.

"The nature of dark matter remains a mystery. Most scientists think it is composed of unknown elementary particles," says Dr. Przemek Mr.óz from the Astronomical Observatory, University of Warsaw, the lead author of both articles. "Unfortunately, despite decades of efforts, no experiment (including experiments carried out with the Large Hadron Collider) has found new particles that could be responsible for dark matter."

New research challenges black holes as dark matter explanation, University of Warsaw, Phys.org.

Read more…

Imaging Infinity...

12415282653?profile=RESIZE_710x

A new image from the Event Horizon Telescope has revealed powerful magnetic fields spiraling from the edge of a supermassive black hole at the center of the Milky Way, Sagittarius A*.

Topics: Astrophysics, Black Holes, Cosmology, Einstein, General Relativity

Physicists have been confident since the 1980s that there is a supermassive black hole at the center of the Milky Way galaxy, similar to those thought to be at the center of most spiral and elliptical galaxies. It has since been dubbed Sagittarius A* (pronounced A-star), or SgrA* for short. The Event Horizon Telescope (EHT) captured the first image of SgrA* two years ago. Now the collaboration has revealed a new polarized image (above) showcasing the black hole's swirling magnetic fields. The technical details appear in two new papers published in The Astrophysical Journal Letters.

"The new picture of Sgr A* compared to the old one shows the advantages of using a paintbrush rather than a crayon," Maynooth University cosmologist Peter Coles said on BlueSky. The new image is also strikingly similar to another EHT polarized image of a larger supermassive black hole, M87*, so this might be something that all such black holes share.

The only way to "see" a black hole is to image the shadow created by light as it bends in response to the object's powerful gravitational field. As Ars Science Editor John Timmer reported in 2019, the EHT isn't a telescope in the traditional sense. Instead, it's a collection of telescopes scattered around the globe. The EHT is created by interferometry, which uses light in the microwave regime of the electromagnetic spectrum captured at different locations. These recorded images are combined and processed to build an image with a resolution similar to that of a telescope the size of the most distant locations. Interferometry has been used at facilities like ALMA (the Atacama Large Millimeter/submillimeter Array) in northern Chile, where telescopes can be spread across 16 km of desert.

Event Horizon Telescope captures stunning new image of Milky Way’s black hole, Jennifer Ouellette, Ars Technica.

Read more…

Ripples, Waves, and Genesis...

10946842085?profile=RESIZE_710x

Numerical simulation of the neutron stars merging to form a black hole, with their accretion disks interacting to produce electromagnetic waves. Credit: L. Rezolla (AEI) & M. Koppitz (AEI & Zuse-Institut Berlin)

Topics: Black Holes, Cosmology, General Relativity, Gravity, Research

Scientists have advanced in discovering how to use ripples in space-time known as gravitational waves to peer back to the beginning of everything we know. The researchers say they can better understand the state of the cosmos shortly after the Big Bang by learning how these ripples in the fabric of the universe flow through planets and the gas between the galaxies.

"We can't see the early universe directly, but maybe we can see it indirectly if we look at how gravitational waves from that time have affected matter and radiation that we can observe today," said Deepen Garg, lead author of a paper reporting the results in the Journal of Cosmology and Astroparticle Physics. Garg is a graduate student in the Princeton Program in Plasma Physics, which is based at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL).

Garg and his advisor Ilya Dodin, who is affiliated with both Princeton University and PPPL, adapted this technique from their research into fusion energy, the process powering the sun and stars that scientists are developing to create electricity on Earth without emitting greenhouse gases or producing long-lived radioactive waste. Fusion scientists calculate how electromagnetic waves move through plasma, the soup of electrons and atomic nuclei that fuels fusion facilities known as tokamaks and stellarators.

Ripples in the fabric of the universe may reveal the start of time, Raphael Rosen, Princeton Plasma Physics Laboratory, Phys.org.

Read more…

Heart of Darkness...

10488793484?profile=RESIZE_710x

The first direct image of the Milky Way's supermassive black hole shows an orange glowing ring — gas heated as it falls into the singularity — with the shadow of the black hole at the center. EHT Collaboration

Topics: Astrophysics, Black Holes, Cosmology, Einstein, General Relativity

In a triumph of observation and data processing, astronomers at the Event Horizon Telescope have captured the first-ever picture of the supermassive black hole at the center of the Milky Way Galaxy.

The black hole is named Sagittarius A* (pronounced “A-star”), and the reveal of its image received an international rollout this morning in simultaneous press conferences held by the National Science Foundation (NSF) at the National Press Club in Washington, D.C., and the European Southern Observatory headquarters in Garching, Germany.

The image represents 3.5 million gigabytes of data taken at millimeter wavelengths by eight radio telescopes around the world. “It took several years to refine our image and confirm what we had,” said Feryal Özel, an astronomer at the University of Arizona in Tucson, at the NSF press conference. “But we prevailed.”

Blackhole at the center of Milky Way imaged for the first time, Mark Zastrow, Astronomy

Read more…

Shadow of Infinity...

10475791890?profile=RESIZE_710x

Figure 1: A cartoon showing the “self-lensing” of light by a supermassive black hole binary system. Jordy Davelaar and Zoltán Haiman of Columbia University predict that this effect could be used to study black hole binaries that are too far from Earth to probe with other techniques

Topics: Black Holes, Cosmology, Einstein, General Relativity

When galaxies collide, the central supermassive black holes that they contain begin to orbit each other. This supermassive black hole binary attracts gas, which flows through the system to form two disk-shaped structures, one around each of the supermassive black holes. The gas in these “minidisks” heats as it falls toward the holes and begins to radiate light. Astronomers have detected around 150 galaxies with candidate supermassive black hole binaries. And, as observations become more detailed, they expect the light from the minidisks in those systems to bear recognizable, time-dependent signatures from black hole distortions [1]. Now, Jordy Davelaar and Zoltán Haiman of Columbia University have theoretically tested how one such distortion—the “shadow” of the black hole—affects this light signature, finding that it causes a dip in the signal that should be observable in about 1% of candidate systems [23]. The technique could allow astronomers to study black holes that are currently beyond the reach of conventional imaging methods (Fig. 1).

From gravitational-wave measurements of merging black holes to direct imaging of the plasma circling a black hole, the last decade has seen an explosion of observational evidence for black holes (see Viewpoint: The First Sounds of Merging Black Holes and News Feature: Black Hole Imaging Tests Einstein’s Limits) [46]. Yet despite these achievements, many questions remain about black holes, including a critical one: How do black holes grow to supermassive scales—millions to billions of times the mass of the Sun?

A black hole is a simple object, described by its mass, angular momentum, and electrical charge. Supermassive black holes are typically electrically neutral, so their mass and angular momentum parameters determine their gravitational fields. The gravitational field determines how the black holes bend light and thus how they appear to an observer on Earth. Light passing near the black hole is deflected by the gravitational field, producing a black hole shadow—a dark region that is often encircled by a bright light ring—whose size and shape come directly from the black hole’s mass and angular momentum.

Measuring a Black Hole Shadow, George N. Wong, APS Physics

Read more…

Rogue Singularity...

10366995491?profile=RESIZE_710x

A lone black hole gives off no light - but its gravity does distort the path of light traveling around it. Ute Kraus (background Milky Way panorama: Axel Mellinger), Institute of Physics, Universität Hildesheim

Topics: Astrophysics, Black Holes, Cosmology, Einstein, General Relativity

Each second, a brand new baby black hole is born somewhere in the cosmos as a massive star collapses under its own weight.

But black holes themselves are invisible. Historically, astronomers have only been able to detect these stellar-mass black holes when they are acting on a companion.

Now, a team of scientists has made the first-ever confirmed detection of a stellar-mass black hole that’s completely alone. The discovery opens up the possibility of finding even more — an exciting prospect, considering there should be around 100 million such “rogue” black holes drifting through our galaxy unseen.

Relying on the neighbors

Black holes are difficult to find because they don’t shine like stars. Anything with mass warps the fabric of space-time, and the greater the mass, the more extreme the warp. Black holes pack so much mass into such a tiny area that space folds back in on itself. That means that if anything, even light, gets too close, its path will always bend back toward the center of the black hole.

Astronomers have found a couple hundred of these ghostly goliaths indirectly, by seeing how they influence their surroundings. They’ve identified around 20 black holes of the small, stellar-mass variety in our galaxy by watching as stars are devoured by invisible companions. As the black hole pulls matter from its neighbor, the material forms a swirling, glowing accretion disk that signals the black hole’s presence.

Astronomers detect the first potential 'rogue' black hole, Ashley Balzer, Astronomy Magazine

Read more…

Cosmic Existentialism...

10038606474?profile=RESIZE_584x

An illustration of a black hole and its event horizon. (Image credit: Nicholas Forder/Future Publishing)

Topics: Astronomy, Astrophysics, Black Holes, Cosmology, Einstein, General Relativity

"Small" black holes are estimated to make up 1% of the universe's matter.

Scientists have estimated the number of "small" black holes in the universe. And no surprise: It's a lot.

This number might seem impossible to calculate; after all, spotting black holes is not exactly the simplest task. Because there are as pitch-black as the space they lurk in, the light swallowing cosmic goliaths can be detected only under the most extraordinary circumstances — like when they're bending the light around them, snacking on the unfortunate gases and stars that stray too close, or spiraling toward enormous collisions that unleash gravitational waves.

But that hasn't stopped scientists from finding some ingenious ways to guess the number. Using a new method, outlined Jan. 12 in The Astrophysical Journal, a team of astrophysicists has produced a fresh estimate for the number of stellar-mass black holes — those with masses 5 to 10 times that of the sun — in the universe.

And it's astonishing: 40,000,000,000,000,000,000, or 40 quintillions, stellar-mass black holes populate the observable universe, making up approximately 1% of all normal matter, according to the new estimate.

So how did the scientists arrive at that number? By tracking the evolution of stars in our universe they estimated how often the stars — either on their own or paired into binary systems — would transform into black holes, said first author Alex Sicilia, an astrophysicist at the International School of Advanced Studies (SISSA) in Trieste, Italy.

40 quintillion stellar-mass black holes are lurking in the universe, a new study finds, Ben Turner, Space.com

Read more…

Black Hole Storm...

9107990885?profile=RESIZE_710x

Topics: Astrophysics, Black Holes, Cosmology, Einstein, General Relativity

Note: From comments on a previous post, maybe science writers need to work on their chosen list of metaphors?

In the far reaches of the Universe, a supermassive black hole is throwing a tantrum.

It's blowing a tremendous wind into intergalactic space, and we're seeing the storm light from 13.1 billion years ago when the Universe was less than 10 percent of its current age. It's the most distant such tempest we've ever identified, and its discovery is a clue that could help astronomers unravel the history of galaxy formation.

"The question is when did galactic winds come into existence in the Universe?" said astronomer Takuma Izumi of the National Astronomical Observatory of Japan (NAOJ).

"This is an important question because it is related to an important problem in astronomy: How did galaxies and supermassive black holes coevolve?"

A Colossal Black Hole Storm Has Been Detected Raging in The Early Universe, Michelle Starr, Science Alert

Read more…