BLOGS

einstein (6)

Geodes...

black_hole_geode_1024.jpg
(Just_Super/iStock)

 

Topics: Black Holes, Cosmology, Dark Energy, Einstein, General Relativity, Gravity


A fifty-year-old hypothesis predicting the existence of bodies dubbed Generic Objects of Dark Energy (GEODEs) is getting a second look in light of a proposed correction to assumptions we use to model the way our Universe expands.

If this new version of a classic cosmological model is correct, some black holes could hide cores of pure dark energy, pushing our Universe apart at the seams.

University of Hawaii astrophysicist Kevin Croker and mathematician Joel Weiner teamed up to challenge the broadly accepted notion that when it comes to the Universe's growing waistline, its contents are largely irrelevant.

"For 80 years, we've generally operated under the assumption that the Universe, in broad strokes, was not affected by the particular details of any small region," said Croker.

"It is now clear that general relativity can observably connect collapsed stars – regions the size of Honolulu – to the behavior of the Universe as a whole, over a thousand billion billion times larger."

Not only could this alternative interpretation of fundamental physics change how we understand the Universe's expansion, but we might need to also consider how that growth might affect compact objects like the cores of collapsing stars.

 

Black Holes May Hide Cores of Pure Dark Energy That Keep The Universe Expanding
Mike McCrae, Science Alert

Read more…

The Gravity of the Matter...

Black-hole-star.jpg
Testing Einstein: conceptual image showing S0-2 (the blue and green object) as it made its closest approach to the supermassive black hole at the center of the Milky Way. The huge gravitational field of the black hole is illustrated by the distorted grid in space–time. (Courtesy: Nicolle R Fuller/National Science Foundation)

 

Topics: Astrophysics, Black Holes, Cosmology, Einstein, General Relativity


A key aspect of Einstein’s general theory of relativity has passed its most rigorous test so far. An international team led by Tuan Do and Andrea Ghez at the University of California, Los Angeles confirmed the Einstein equivalence principle (EEP) by analyzing the redshift of light from the star S0-2 at its closest approach to Sagittarius A* – the supermassive black hole at the center of the Milky Way. The study combined over 20 years of existing spectroscopic and astrometric measurements of S0-2 with the team’s own observations.

Since Einstein first proposed his general theory of relativity in 1915, the idea has stood up to intense experimental scrutiny by explaining the behaviors of gravitational fields in the solar system, the dynamics of binary pulsars, and gravitational waves emitted by mergers of black holes.

In 2018, the GRAVITY collaboration carried out a particularly rigorous test – observing S0-2 at its closest approach to Sagittarius A* in its 16-year orbit.

As expected, the GRAVITY astronomers observed a characteristic relativistic redshift in light from S0-2. This redshift is a lengthening of the wavelength of the light and arises from both the motion of the star (the Doppler effect) and the EEP. The latter is a consequence of general relativity and predicts a redshift in light from a source that is in a gravitational field such as that of a supermassive black hole.

 

Einstein’s general theory of relativity tested by star orbiting a black hole
Sam Jarman, Physics World

Read more…

Entanglement...

Entanglement.PNG
Physicists take first-ever photo of quantum entanglement.
Credit: University of Glasgow/CC by 4.0

 

Topics: Einstein, Entanglement, Laser, Quantum Mechanics


Scientists just captured the first-ever photo of the phenomenon dubbed "spooky action at a distance" by Albert Einstein. That phenomenon, called quantum entanglement, describes a situation where particles can remain connected such that the physical properties of one will affect the other, no matter the distance (even miles) between them.

Einstein hated the idea, since it violated classical descriptions of the world. So he proposed one way that entanglement could coexist with classical physics — if there existed an unknown, "hidden" variable that acted as a messenger between the pair of entangled particles, keeping their fates entwined. [18 Times Quantum Particles Blew Our Minds in 2018]

There was just one problem: There was no way to test whether Einstein's view — or the stranger alternative, in which particles "communicate" faster than the speed of light and particles have no objective state until they are observed — was true. Finally, in the 1960s, physicist Sir John Bell came up with a test that disproves the existence of these hidden variables — which would mean that the quantum world is extremely weird.

This is "the pivotal test of quantum entanglement," said senior author Miles Padgett, who holds the Kelvin Chair of Natural Philosophy and is a professor of physics and astronomy at the University of Glasgow in Scotland. Though people have been using quantum entanglement and Bell's inequalities in applications such as quantum computing and cryptography, "this is the first time anyone has used a camera to confirm [it]."

To take the photo, Padgett and his team first had to entangle photons, or light particles, using a tried-and-true method. They hit a crystal with an ultraviolet (UV) laser, and some of those photons from the laser broke apart into two photons. "Due to conservation of both energy and momentum, each resulting pair [of] photons are entangled," Padgett said.

 

'Spooky' Quantum Entanglement Finally Captured in Stunning Photo
Yasemin Saplakoglu, Live Science

Read more…

Wormhole Slow-Mo...

Credit: CC0 Public Domain

 

Topics: Black Holes, Einstein, General Relativity, Science Fiction, Wormholes


“Sometimes people don't want to hear the truth because they don't want their illusions destroyed.” Friedrich Nietzsche, Good Reads

A Harvard physicist has shown that wormholes can exist: tunnels in curved space-time, connecting two distant places, through which travel is possible.

But don't pack your bags for a trip to other side of the galaxy yet; although it's theoretically possible, it's not useful for humans to travel through, said the author of the study, Daniel Jafferis, from Harvard University, written in collaboration with Ping Gao, also from Harvard and Aron Wall from Stanford University.

"It takes longer to get through these wormholes than to go directly, so they are not very useful for space travel," Jafferis said. He will present his findings at the 2019 American Physical Society April Meeting in Denver.

Despite his pessimism for pan-galactic travel, he said that finding a way to construct a wormhole through which light could travel was a boost in the quest to develop a theory of quantum gravity.

 

Travel through wormholes is possible, but slow, American Institute of Physics, Phys.org

Read more…

Event Horizon...

Scientists have obtained the first-ever image of a black hole — at center of the galaxy M87. Credit: Event Horizon Telescope collaboration et al.

 

Topics: Astrophysics, Black Holes, Cosmology, Einstein


(Yesterday) At six simultaneous press conferences around the globe, astronomers on Wednesday announced they had accomplished the seemingly impossible: taking a picture of a black hole, a cosmic monster so voracious that light itself cannot escape its clutches.

This historic feat, performed by the Event Horizon Telescope (EHT)—a planet-spanning network of radio observatories—required more than a decade of effort. The project’s name refers to a black hole’s most defining characteristic, an “event horizon” set by the object’s mass and spin beyond which no infalling material, including light, can ever return.

“We have taken the first picture of a black hole,” the EHT project’s director, Sheperd Doeleman, said in a news release. “This is an extraordinary scientific feat accomplished by a team of more than 200 researchers.”

The image unveils the shadowy face of a 6.5-billion-solar-mass supermassive black hole at the core of Messier 87 (M87), a large galaxy some 55 million light-years from Earth in the Virgo galaxy cluster. Such objects are a reflection of Einstein’s theory of general relativity, which predicts that only so much material can be squeezed into any given volume before the overwhelming force of its accumulated gravity causes a collapse—a warp in the fabric of spacetime that swallows itself. Left behind is an almost featureless nothingness that, for lack of better terms, scientists simply call a black hole.

"Gargantua," special effects from the movie, Interstellar, 2014 (Kip Thorne et al guessed right):
Image Source: HDQ Walls dot com

 

At Last, a Black Hole’s Image Revealed, Lee Billings, Scientific American

Read more…

Lumpy Neutron Stars...

An artist’s rendition of a neutron star. Credit: Kevin Gill Flickr (CC by 2.0)

 

Topics: Astronomy, Astrophysics, Einstein, Gravitational Waves, Neutron Stars


Gravitational waves—the ghostly ripples in spacetime first predicted by Einstein and finally detected a century later by advanced observatories—have sparked a revolution in astrophysics, revealing the otherwise-hidden details of merging black holes and neutron stars. Now, scientists have used these waves to open another new window on the universe, providing new constraints on neutron stars' exact shapes. The result will aid researchers in their ongoing quest to understand the inner workings of these exotic objects.

So far, 11 gravitational-wave events have been detected by the LIGO (Laser Interferometer Gravitational-Wave Observatory) interferometers in Washington and Louisiana and the Virgo gravitational-wave observatory in Italy. Of these events, 10 came from mergers of binary black holes, and one from the merger of two neutron stars. In all cases, the form of the waves matched the predictions of Einstein's theory of general relativity.

For the binary black hole events, the passing waves lasted less than a second; for the merging neutron stars, the emissions occurred for about 100 seconds. But such rapid pulses aren't the only types of gravitational waves that could be streaming through the universe. In particular, solitary neutron stars might be emitting detectable gravitational waves as they spin—signals that could reveal important new details of the stars' topography and internal composition.

 

Gravitational Observatories Hunt for Lumpy Neutron Stars
David Appell, Scientific American

Read more…