Avi Loeb, a Harvard University astrophysicist, displays a small vial of material recovered from the floor of the Pacific Ocean. The material, Loeb says, includes fragments of a meteorite that he claims came from another star system—and perhaps even from an alien spacecraft. Credit: Anibal Martel/Anadolu Agency via Getty Images
Topics: Astronomy, Astrophysics, Civilization, Cosmology, Existentialism, Theoretical Physics
Reanalysis of a meteor that fell to Earth has cast some doubt on its origin—and its final destination.
This much is certain: on January 8, 2014, an object now cataloged as CNEOS 2014-01-08 entered Earth’s atmosphere somewhere overhead off the northern coast of Papua New Guinea in the South Pacific, heating to become a blazing, shockwave-generating fireball during its plunge from space. Such events are not rare; meteors enter our atmosphere all the time. But estimates of the object’s speed, touted at some 45 kilometers per second, led to suggestions that it might be interstellar in origin—a space rock from some alien and distant planetary system. While we have seen interstellar objects passing through our solar system before, no such objects were known to have ever made planetfall on Earth. So interest in CNEOS 2014-01-08 was piqued, given that its fragments could potentially offer a first direct sample of material sourced from another star.
In June 2023 Avi Loeb—a theoretical physicist at Harvard University—mounted a $1.5-million expedition to find pieces of the meteor. Loeb has been the leading proponent of the notion that this meteor was indeed interstellar in origin—and has even speculated that it may be linked to putative alien spacecraft. His recovery expedition—which was part of his UFO-studying Galileo Project—became a public sensation, further padding Loeb’s already long list of high-profile media spots, which included interviews on prime-time national television shows and with the easily enraptured podcast host Joe Rogan. Loeb has written countless blog posts and a bestselling book on his unorthodox approach to studying extraterrestrial life and intelligence. He has even gone so far as to appear on a giant billboard in Times Square promoting the Galileo Project’s efforts to find the interstellar meteor fragments.
His approach to the topic has, at times, been abrasive, and many other astrobiology-inclined researchers have found his sensational claims too difficult to parse and potentially damaging to their field. But as with any scientific investigation, particularly with findings as provocative as those suggested by Loeb, there is invariably interest in trying to find flaws in the methodology and to offer alternative, more plausible solutions. This latest episode is no exception; it focuses on one very specific data point from this purported interstellar object.
Loeb’s recovery expedition used a boat-dragged magnetic “sled” to scrape samples of sediments from strips of seafloor in an 11-kilometer-wide square where the team believed the meteor had fallen. That zone of inquiry primarily emerged from triangulating the meteor’s presumptive debris field using sensor data from a classified network of U.S. military satellites that were scrubbed of sensitive details and made public as part of NASA’s Center for Near Earth Object Studies (CNEOS). Loeb’s pinpointing also used a local seismometer on Manus Island, Papua New Guinea, which recorded vibrations from an event around the time the meteor supposedly entered the atmosphere to reduce the search area to a strip that was one-kilometer wide.
After studying those seismometer data, however, Benjamin Fernando, a planetary scientist at Johns Hopkins University, has concluded that Loeb’s analysis was flawed. The seismometer, Fernando says, recorded not a celestial object but something much more mundane and closer to home—a passing heavy truck—meaning that the location Loeb and his team searched would not have been in the path of the falling object. “We think that what they picked up from the seafloor is nothing to do with this meteor at all,” says Fernando, who posted the research on the preprint server arXiv.org and presented it at the Lunar and Planetary Science Conference (LPSC) in Texas on Tuesday, March 12.
Fernando and his colleagues maintain that the seismic spike used by Loeb’s team was decidedly similar to other signals likely caused by “cultural noise”—that is, vibrations from vehicles and other hefty, human-made sources. A signal’s polarization can be used to estimate the direction of the source, and in this case, it suggested a movement from “southwest to north over about 100 seconds,” Fernando says. That matches the orientation of a road near the seismometer that runs to a local hospital and aligns with another matching signal that perhaps came from the same vehicular source that was detected earlier in the day (when no known fireballs were overhead). “It’s actually just a truck driving by,” he says. Using information from a separate network of infrasound sensors meant to look for clandestine atomic explosions as part of the Comprehensive Nuclear-Test-Ban Treaty, Fernando and his team provide a different entry point for the meteor some 170 kilometers from where Loeb’s group searched. They also argue that the meteor mostly burned up in the atmosphere anyway, scattering few, if any, notable pieces onto the land or sea below. “You wouldn’t go looking for bits of a firework,” Fernando says.
In the list of logical fallacies, I found unfortunately two (depending on the source, the total list can number 20, 24, more, etc.), that I reflected on as I read this article: "Hasty Generalization," and "Ought-Is."
Hasty Generalization means what this looks like, drawing some really spectacular conclusions on what appears to be limited evidence. The second, "Ought-Is," along with the recent scandal of 10,000 papers retracted in 2023 due to (I think) the pressure to "see your name(s)" in high-impact journals, has taken on the similitude of getting "likes" on social media, and has put the scientific enterprise, the hallmark of the Enlightenment, in crisis. "Ought-Is" fallacies are another word for wishful thinking. At that point, scientific progress grinds to a halt, and we slowly start limping back to the dark ages.
"The Demon-Haunted World: Science as a Candle in the Dark," by Carl Sagan (1995).
The demons appear to be winning.
‘Interstellar’ Meteor Signal May Have Been a Truck—So What Was Collected from the Ocean Floor? Jonathan O'Callaghan, Scientific American