quantum computer (5)



Image Source: Link below

Topics: Particle Physics, Quantum Computer, Quantum Mechanics, Theoretical Physics

Flatland: “The book used the fictional two-dimensional world of Flatland to comment on the hierarchy of Victorian culture, but the novella’s more enduring contribution is its examination of dimensions.” Source: Wikipedia

After decades of exploration in nature’s smallest domains, physicists have finally found evidence that anyons exist. First predicted by theorists in the early 1980s, these particle-like objects only arise in realms confined to two dimensions, and then only under certain circumstances — like at temperatures near absolute zero and in the presence of a strong magnetic field.

Physicists are excited about anyons not only because their discovery confirms decades of theoretical work, but also for practical reasons. For example, Anyons are at the heart of an effort by Microsoft to build a working quantum computer.

This year brought two solid confirmations of the quasiparticles. The first arrived in April, in a paper featured on the cover of Science, from a group of researchers at the École Normale Supérieure in Paris. Using an approach proposed four years ago, physicists sent an electron gas through a teeny-tiny particle collider to tease out weird behaviors — especially fractional electric charges — that only arise if anyons are around. The second confirmation came in July when a group at Purdue University in Indiana used an experimental setup on an etched chip that screened out interactions that might obscure anyon behavior.

MIT physicist Frank Wilczek, who predicted and named anyons in the early 1980s, credits the first paper as the discovery but says the second lets the quasiparticles shine. “It’s gorgeous work that makes the field blossom,” he says. Anyons aren’t like ordinary elementary particles; scientists will never be able to isolate one from the system where it forms. They’re quasiparticles, which means they have measurable properties like a particle — such as a location, maybe even a mass — but they’re only observable as a result of the collective behavior of other, conventional particles. (Think of the intricate geometric shapes made by group behavior in nature, such as flocks of birds flying in formation or schools of fish swimming as one.)

The known universe contains only two varieties of elementary particles. One is the family of fermions, which includes electrons, as well as protons, neutrons, and the quarks that form them. Fermions keep to themselves: No two can exist in the same quantum state at the same time. If these particles didn’t have this property, all matter could simply collapse to a single point. It’s because of fermions that solid matter exists.

The rest of the particles in the universe are bosons, a group that includes particles like photons (the messengers of light and radiation) and gluons (which “glue” quarks together). Unlike fermions, two or more bosons can exist in the same state at the same time. They tend to clump together. It’s because of this clumping that we have lasers, which are streams of photons all occupying the same quantum state.

Physicists prove the existence of two-dimensional particles called 'anyons', Stephen Omes, Astronomy (December 2020)

Read more…

Breaking Physics...


Topics: Quantum Computer, Quantum Mechanics, Thermodynamics

In what could prove to be a momentous accomplishment for fundamental physics and quantum physics, scientists say they’ve finally figured out how to manufacture a scientific oddity called a time crystal.

Time crystals harness a quirk of physics in which they remain ever-changing yet dynamically stable. In other words, they don’t give off energy as they change conformation, making them an apparent violation of the natural law that all things gradually turn towards entropy and disorder.

Now, it seems like it’s possible for these things to exist, after all, Quanta Magazine reports. At least, that’s according to what a massive team of researchers from Stanford, Princeton, and elsewhere working with Google’s quantum computing labs claimed in preprint research shared online last week. Aside from being an incredible scientific discovery in abstract — time crystals represent a new, bizarre phase of matter — the discovery could have profound implications for the finicky world of quantum computing.

“The consequence is amazing: You evade the second law of thermodynamics,” study coauthor and Max Planck Institute for the Physics of Complex Systems director Roderich Moessner told Quanta.

Google Claims To Create Time Crystals Inside Quantum Computer, Dan Robitzski, Futurism

Read more…

Space-Based Quantum Technology...


(Credit: Yurchanka Siarhei/Shutterstock)

Topics: Computer Science, Quantum Computer, Quantum Mechanics

Quantum technologies are already revolutionizing life on Earth. But they also have the potential to change the way we operate in space. With the U.S., China, and Europe all investing heavily in this area, these changes are likely to be with us sooner rather than later.

So how will space-based quantum technologies make a difference?

Now, we get an overview thanks to the work of Rainer Kaltenbaek at the Institute for Quantum Optics and Quantum Information, in Austria, and colleagues throughout Europe, who have mapped out the future in this area and set out the advances that space-based quantum technologies will make possible.

While quantum computing and quantum communication grab most of the headlines, Kaltenbaek and colleagues point out that other quantum technologies are set to have equally impressive impacts. Take, for example, atom interferometry with quantum sensors.

These devices can measure with unprecedented accuracy any change in motion of a satellite in orbit as it is buffeted by tiny variations in the Earth’s gravitational field. These changes are caused by factors such as the movement of cooler, higher-density water flows in the deep ocean, flooding, the movement of the continents, and ice flows.

The Future of Space-Based Quantum Technology, Discover/Physics arXiv

Read more…

Graphene Beam Splitter...


Splitting up: schematic of the electron beam splitter with the n side on the right and the p side on the left. (Courtesy: M Jo et al/Phys. Rev. Lett.)

Topics: Graphene, Interferometry, Nanotechnology, Quantum Computer

A graphene-based “beam splitter” for electronic currents has been built by researchers in France, South Korea, and Japan. Created by Preden Roulleau at the University of Paris and colleagues, the tunable device’s operation is directly comparable to that of an optical interferometer. The technology could soon enable allow electron interferometry to be used in nanotechnology and quantum computing.

An optical interferometer splits a beam of light in two, sending each beam along a different path before recombining the beams at a detector. The measured interference of the beams at the detector can be used to detect tiny differences in the lengths of the two paths. Recently, physicists have become interested in doing a similar thing with currents of electrons in solid-state devices, taking advantage of the fact that electrons behave like waves in the quantum world.

Graphene is a sheet of carbon just one atom thick and is widely considered to be the best material for realizing such “electron quantum optics”. Indeed, researchers have already used the material to make simple electron interferometers. Now, Roulleau’s team has created a fully adjustable electron beam splitter that could be used to build more sophisticated devices. It exploits the quantum Hall effect, whereby the application of a strong magnetic field perpendicular to a sheet of graphene will cause an electron current to flow around the edge of the sheet.

Graphene beam splitter gives electron quantum optics a boost, Sam Jarman, Physics World

Read more…

Integrated Nanodiamonds...


Nanophotonic integration for simultaneously controlling a large number of quantum mechanical spins in nanodiamonds. (Image: P. Schrinner/AG Schuck)

Topics: Nanotechnology, Quantum Computer, Quantum Mechanics, Semiconductor Technology

(Nanowerk News) Physicists at Münster University have succeeded in fully integrating nanodiamonds into nanophotonic circuits and at the same time addressing several of these nanodiamonds optically. The study creates the basis for future applications in the field of quantum sensing schemes or quantum information processors.

The results have been published in the journal Nano Letters ("Integration of Diamond-Based Quantum Emitters with Nanophotonic Circuits").

Using modern nanotechnology, it is possible nowadays to produce structures that have feature sizes of just a few nanometers.

This world of the most minute particles – also known as quantum systems – makes possible a wide range of technological applications, in fields which include magnetic field sensing, information processing, secure communication, or ultra-precise timekeeping. The production of these microscopically small structures has progressed so far that they reach dimensions below the wavelength of light.

In this way, it is possible to break down hitherto existent boundaries in optics and utilize the quantum properties of light. In other words, nanophotonics represents a novel approach to quantum technologies.

Controlling fully integrated nanodiamonds, Westfälische Wilhelms-Universität Münster

Read more…