nanotechnology (30)

187839_web.jpg
CAPTION
A graduate student gains hands-on experience with state-of-the-art nanotechnology equipment in the Center for Nanotechnology Education and Utilization Teaching Cleanroom.

CREDIT
Penn State

 

Topics: African Americans, Diversity, Diversity in Science, Existentialism, Nanotechnology, STEAM

Related: Be Thankful for What You Got, William DeVaughn, Genius Lyrics


Note: When this post appears, I will be in a midterm in Solid State Devices. I purposely did not post yesterday to let the tribute to Ms. Katherine Johnson Tuesday be an appropriate and respectful dénouement. After Friday seminar, I will take a needed spring break.

Nanotechnology is STEM at the 10-9 meter scale: a nanometer. To advance any understanding at that level, there has to be a respect for objective truth:

A proposition is considered to have objective truth when its truth conditions are met without bias caused by a sentient subject. Scientific objectivity refers to the ability to judge without partiality or external influence, sometimes used synonymous with neutrality. Wikipedia

After Watergate, a political party created its own echo chamber in print, radio, television and the Internet that now confuses objective versus subjective truth, i.e. that which matters in ones own opinion is therefore defended as "fact." We're daily inundated with the solipsistic subjective truth of a pathological liar, which that in and of itself is an area of mental illness as democracy is not a matter of "opinion," but a debate over a shared view of facts and what if anything will be done to ameliorate any problem put forwards. Ostrich politics doesn't even work for ostriches: like most foul, their not burying their heads in sand, they eat it and gravel to aid with their digestion.

Raking and mopping will not address climate change; neither will denying the spreading of the coronavirus in the west. It doesn't help that funding for the CDC and HHS were cut, and a lot of government agencies designed to fight pandemics either shuttered, unfunded or both. Forgive me if I'm dubious that the party whose senator brings a snowball to the well of the senate to disprove climate change won't eventually cut what we could innovate in nanotechnology, particularly expanding it to underrepresented groups to participate. They wouldn't see the value it gives to all Americans because they are just that myopic.

November 3, 2020 might as well be Judgment Day, when we either right this ship of state from the impact of ignoramuses and "alternative facts," or this dark momentum will edge us over the precipice into dystopia. Once America falls - and I'm sure her enemies know this - all other democracies around the world and civilization, is in peril.

Like the right wing truckers with smokestacks to "own the libs": we all have to live on the same planet: cooperation, or extinction.

 

*****


New Louis Stokes Regional Center of Excellence created with National Science Foundation funding

Traditionally, minority students have been underrepresented in science, technology, engineering and mathematics (STEM) programs -- and in the STEM marketplace. And as the U.S. innovation economy continues to grow, there comes an increasing requirement for skilled STEM workers to maintain the nation's status as a global leader. However, a significant challenge for workforce diversity exists because of limited access to underrepresented populations to quality STEM education and opportunities for STEM employment.

To try and overcome this challenge and ensure national competitiveness and sustained STEM global leadership, the Penn State Center for Nanotechnology Education and Utilization (CNEU), along with Norfolk State University (NSU) and Tidewater Community College (TCC), will form the Southeastern Coalition for Engagement and Exchange in Nanotechnology Education (SCENE) Louis Stokes Regional Center of Excellence in Broadening Participation. A total of $1.2 million in funding for this center was recently awarded by the National Science Foundation.

SCENE will focus on increasing recruitment and retention of underrepresented minority (URM) undergraduate and graduate students at Historically Black Colleges and Universities (HBCU) and at community colleges with minority and underrepresented student enrollments. Recruitment efforts will be aimed at students studying STEM through nanoscience and nanotechnology education and engagement.
 

 

Nanotechnology center to help broaden participation of minorities in STEM fields
6 December 2018, Penn State


SO let us summon a new spirit of patriotism; of service and responsibility where each of us resolves to pitch in and work harder and look after not only ourselves, but each other. Let us remember that if this financial crisis taught us anything, it’s that we cannot have a thriving Wall Street while Main Street suffers – in this country, we rise or fall as one nation; as one people.

We Rise and Fall as ONE Nation, November 5, 2008, President-elect Barack Obama, New York Post

"We must learn to live together as brothers or perish together as fools." Dr. Martin Luther King, Jr.
Read more…

A Beautiful Life...

nyTc9e3BK5fDLDSL26csHT-650-80.jpg
NASA mathematician Katherine Johnson (second left) is honored onstage with actors (left to right) Janelle Monae, Taraji P. Henson and Octavia Spencer - the stars of "Hidden Figures," which focuses on Johnson's work with NASA's Mercury program - during the 89th Annual Academy Awards at Hollywood & Highland Center on February 26, 2017 in Hollywood, California. NASA astronaut Yvonne Cagle is seen standing behind Johnson
(Image: © Kevin Winter/Getty Images) Space.com

Topics: African Americans, Diversity, Diversity in Science, Nanotechnology, NASA, Women in Science


Despite segregation, setbacks and Jim Crow, Katherine Johnson is one of the many "shoulders of giants" we stand upon.

As alluded to yesterday, nanotechnology is multifaceted: molecular biology, materials science, electrical and mechanical engineering, chemistry and physics. Her specific area was applied mathematics and computer science, without which no data could be analysed post an experiment.

That's what women were called back then: computers. Computer mainframes were just beginning development, the transistor - discovered by William Shockley, John Bardeen and Walter Houser Brattain - was exploited to reduce payload by the nascent NASA to win the space race against the Russians who launched Sputnik. The spin off from that effort was codified in Moore's law that has given us everything from flash drives to smart phones. The foundation of all this is mathematics - paper, pencil, chalk or dry erase board. The answer sometimes has to be wrestled with and ground out. From the calculus step, one typically encounters an impressive breadth of algebra to wade through.

I particularly thought of Ms. Johnson on a MATLAB (matrix laboratory) assignment coding the Euler equation. Though daunting, my code successfully executed what I asked of it. I did it in the 21st century, where I did not have the indignity of bathrooms designated based on my skin color or gender. I have you, my sister and many other giants to thank for that.

The two things I can say that are most appropriate and respectful to Ms. Johnson's family in this time of their loss:

Thank you.
Godspeed.


HAMPTON, Va. (AP) — NASA says Katherine Johnson, a mathematician who worked on NASA’s early space missions and was portrayed in the film Hidden Figures, about pioneering black female aerospace workers, has died.

In a Monday morning tweet, the space agency said it celebrates her 101 years of life and her legacy of excellence and breaking down racial and social barriers.

 

Pioneering NASA mathematician Katherine Johnson of ‘Hidden Figures’ fame has died at 101
The Associated Press on TheGrio.com

#P4TC links:

Admiration and Gratitude...August 27, 2018
Modern Figures 28 February 2017...February 28, 2017
Katherine Johnson...February 2, 2018
Euler's Method...January 17, 2017
Hidden Figures...January 6, 2017

Read more…

Article 1 Section 8 | Clause 8...

blog-omni-nano-how-to-define-nanotechnology-001.jpg
Image Source: Omni Nano - The challenge of defining nanotechnology to a broad audience


Topics: African Americans, Diversity, Diversity in Science, Nanotechnology


Article I Section 8 | Clause 8 – Patent and Copyright Clause of the Constitution. [The Congress shall have power] “To promote the progress of science and useful arts, by securing for limited times to authors and inventors the exclusive right to their respective writings and discoveries.”

 

Stanford University Libraries: Fair Use/US Constitution


This is the least-mentioned clause in The Constitution. We tend to get in a twist over the First and Second Amendments (likely not because of the importance of every amendment, but that these are the first two, and most discussed popularly).

About the NNI

Welcome to the National Nanotechnology Initiative (NNI) website. The NNI is a U.S. Government research and development (R&D) initiative involving 20 departments and independent agencies working together toward the shared vision of "a future in which the ability to understand and control matter at the nanoscale leads to a revolution in technology and industry that benefits society." The NNI brings together the expertise needed to advance this broad and complex field—creating a framework for shared goals, priorities, and strategies that helps each participating Federal agency leverage the resources of all participating agencies. With the support of the NNI, nanotechnology R&D is taking place in academic, government, and industry laboratories across the United States.

 

NANO.gov: About the NNI


What is the NNI?

The NNI is a U.S. Government research and development (R&D) initiative involving the nanotechnology-related activities of 20 departments and independent agencies. The United States set the pace for nanotechnology innovation worldwide with the advent of the NNI in 2000. The NNI today consists of the individual and cooperative nanotechnology-related activities of Federal agencies with a range of research and regulatory roles and responsibilities. Funding support for nanotechnology R&D stems directly from NNI member agencies. As an interagency effort, the NNI informs and influences the Federal budget and planning processes through its member agencies and through the National Science and Technology Council (NSTC). The NNI brings together the expertise needed to advance this broad and complex field—creating a framework for shared goals, priorities, and strategies that helps each participating Federal agency leverage the resources of all participating agencies. With the support of the NNI, nanotechnology R&D is taking place in academic, government, and industry laboratories across the United States.

 

NANO.gov: What is the NNI?


"To promote the progress of science and useful arts,"...

This shouldn't be left up to interpretation, but science and useful arts is an instructive turn of phrase.

Useful art, or useful arts or techniques, is concerned with the skills and methods of practical subjects such as manufacture and craftsmanship. The phrase has now gone out of fashion, but it was used during the Victorian era and earlier as an antonym to the performing art and the fine art. Wikipedia/Useful_art

Creationism/Intelligent Design/Flat and Young Earth enthusiasts are not advocating science: they're  pseudoscience. Like eugenics, it is the counter authoritarianism gives when it feels threatened. If some of its proponents have patents, I am not aware, but if they possess them, they adhered to STEM disciplines, not poppycock.

The United States has an undistinguished history built on the foundations of land theft from First Nation Peoples (so-called Indians by Columbus) and involuntarily enslaved Africans of the Diaspora.

This however is the invention clause that awards patents for creative ideas, documenting its originator, how the invention is used and ownership. Inventions create commerce, jobs and most importantly: wealth.

The website Interesting Engineering: The A-Z List of Black Inventors is probably not an all-encompassing list, numbering 248. However, it should be a guide to how and where African Americans have contributed through their inventiveness to society and this nation. Cautionary at casual observance, it suggests the problems of the community is merely a matter of chutzpah and bootstraps.

Although Jasper Newton “Jack” Daniel is credited with inventing Jack Daniel’s in the 19th century, the company revealed last year that Daniel learned the trade of whiskey making from a slave named Nathan “Uncle Nearest” Green. (Green’s nickname is often incorrectly misspelled as “Nearis.”) Daniel then went on to open the Jack Daniel’s Tennessee whiskey distillery in 1875, where Green worked as the master distiller until at least 1881.

New York Times best-selling author Fawn Weaver says she discovered the story of Green from an article published by The New York Times that moved her to dig more into his history. That’s when she learned that Green was not the only African American involved in the process of distilling Jack Daniel’s whiskey. In fact, generations of Green’s descendants worked together with the Daniel family to make the iconic whiskey decades later. Some of Green’s offspring still work in the whiskey industry today.

 

THE SLAVE BEHIND JACK DANIEL’S WHISKEY RECIPE TO RECEIVE NEW HONOR
Selena Hill, Black Enterprise, July 28, 2017


This issue has always been fair use, and fairness.

What impact would fairness have had on the Green family with complete patent control of what has now become an American icon?

According the Center for American Progress in an article written by Angela Hanks, Danyelle Solomon, and Christian E. Weller in 2018, the median wealth of black and white in America will not come to equivalency for 200 years. That is a byproduct not of preponderance of Melanin or assigned depravity: it was government policy, hubris and ignorance on the Greens' part as to what rights they had to their invention.

..."by securing for limited times to authors and inventors the exclusive right to their respective writings and discoveries."

Whatever creativity, inventive ideas we contribute in macro, micro or nano spaces, may we be treated fairly; allowing us the fair use of "science and useful arts" towards the benefit of mankind, our progeny and posterity. Such may narrow the 200 years predicted, the equivalent of starting a 100 meter dash in leg irons.
Read more…

Current Time...

drake-equation-1600px.jpg
The Drake Equation from the SETI institute.

 

Topics: African Americans, Drake Equation, Existentialism, Extinction, Nanotechnology, Philosophy

Where:

N = The number of civilizations in the Milky Way Galaxy whose electromagnetic emissions are detectable.
R* = The rate of formation of stars suitable for the development of intelligent life.
fp = The fraction of those stars with planetary systems.
ne = The number of planets, per solar system, with an environment suitable for life.
fl = The fraction of suitable planets on which life actually appears.
fi = The fraction of life bearing planets on which intelligent life emerges.
fc = The fraction of civilizations that develop a technology that releases detectable signs of their existence into space.
L = The length of time such civilizations release detectable signals into space.

*****

Note: This milestone will be one month old Sunday. We shaved 20 seconds.

Closer than ever:
It is 100 seconds to midnight
2020 Doomsday Clock Statement

Science and Security Board
Bulletin of the Atomic Scientists

Editor, John Mecklin


Editor’s note: Founded in 1945 by University of Chicago scientists who had helped develop the first atomic weapons in the Manhattan Project, the Bulletin of the Atomic Scientists created the Doomsday Clock two years later, using the imagery of apocalypse (midnight) and the contemporary idiom of nuclear explosion (countdown to zero) to convey threats to humanity and the planet. The decision to move (or to leave in place) the minute hand of the Doomsday Clock is made every year by the Bulletin’s Science and Security Board in consultation with its Board of Sponsors, which includes 13 Nobel laureates. The Clock has become a universally recognized indicator of the world’s vulnerability to catastrophe from nuclear weapons, climate change, and disruptive technologies in other domains.

 

To: Leaders and citizens of the world
Re: Closer than ever: It is 100 seconds to midnight
Date: January 23, 2020


Humanity continues to face two simultaneous existential dangers—nuclear war and climate change—that are compounded by a threat multiplier, cyber-enabled information warfare, that undercuts society’s ability to respond. The international security situation is dire, not just because these threats exist, but because world leaders have allowed the international political infrastructure for managing them to erode.

In the nuclear realm, national leaders have ended or undermined several major arms control treaties and negotiations during the last year, creating an environment conducive to a renewed nuclear arms race, to the proliferation of nuclear weapons, and to lowered barriers to nuclear war. Political conflicts regarding nuclear programs in Iran and North Korea remain unresolved and are, if anything, worsening. US-Russia cooperation on arms control and disarmament is all but nonexistent.

Public awareness of the climate crisis grew over the course of 2019, largely because of mass protests by young people around the world. Just the same, governmental action on climate change still falls far short of meeting the challenge at hand. At UN climate meetings last year, national delegates made fine speeches but put forward few concrete plans to further limit the carbon dioxide emissions that are disrupting Earth’s climate. This limited political response came during a year when the effects of man-made climate change were manifested by one of the warmest years on record, extensive wildfires, and quicker-than-expected melting of glacial ice.

Continued corruption of the information ecosphere on which democracy and public decision making depend has heightened the nuclear and climate threats. In the last year, many governments used cyber-enabled disinformation campaigns to sow distrust in institutions and among nations, undermining domestic and international efforts to foster peace and protect the planet.

This situation—two major threats to human civilization, amplified by sophisticated, technology-propelled propaganda—would be serious enough if leaders around the world were focused on managing the danger and reducing the risk of catastrophe. Instead, over the last two years, we have seen influential leaders denigrate and discard the most effective methods for addressing complex threats—international agreements with strong verification regimes—in favor of their own narrow interests and domestic political gain. By undermining cooperative, science- and law-based approaches to managing the most urgent threats to humanity, these leaders have helped to create a situation that will, if unaddressed, lead to catastrophe, sooner rather than later.

 

*****


The full PDF version of the above is here. Facebook has finally released limited data for social scientists to research the effect of their platform on democracy, just as our senate blocks bills meant for protecting the voting franchise. State legislatures in Florida and Georgia make it difficult for ex-felons or people of color to vote - who needs Russians when shortsighted republicans will do? The confluence of avarice and racist hegemony may well spell the epitaph of our republic, species, and life on this planet. The 2020 elections may slow the Doomsday Clock, or speed us seconds closer.

In the Drake Equation, that even Dr. Frank Drake hedges bets against, the L: the length of time such civilizations release detectable signals into space, along with the fraction of planets where intelligent life emerges (I'm dubious about ours) are the most important variables in the equation, from a philosophical point of view.

It means to me: no more Ginai Seabron graduates, no nanoscience, nanoengineering or nanotechnology. No fretting about how to make the discipline inclusive, as surviving cavemen and women have other more pressing concerns. There cannot be advancement on such an aggressive act of mutually-assured destruction (M.A.D.). There are no "winners" or losers following such a destructive path, only un-buried corpses.

It means to me: if we survive our own avarice and hubris, my granddaughter can have a future not decided by "the color of her skin, but by the content of her character," and she could literally reach for the stars. Or, we could all be baited to Armageddon by a tweet. You can apparently get reduced sentences for your friends, despite DOJ guidelines. A Banana Republic in 140 characters. "Stop and frisk"; non-disclosure agreements for sexual harassment from the so-called benign (actual) billionaire candidate doesn't give me much hope. For my granddaughter's future, I'd like to have some.

We would theoretically and literally, then all be equalized to ashes. The universe would be indifferent to which pile of ash was a billionaire or pauper, so-called white, black or other; or a grandfather making his granddaughter laugh with a silly song about "little feet." Our self-induced inequality problems would be solved - for eternity.

The search for extraterrestrial intelligence would be over on our end, as earthbound intelligence, post-Apocalypse would then have been found...bereft.
Read more…

Ginai Seabron...

Ginai%2BSeabron.jpg
Ginai Seabron smiles as she exits the Biocomplexity Institute at Steger Hall after the nanoscience graduation ceremony, held the afternoon of May 11.

 

Topics: Diversity, Diversity in Science, Nanotechnology, Women in Science


On May 11, (2018) Ginai Seabron became the first African-American woman to earn a B.S. in nanoscience from the College of Science at Virginia Tech.

As one of only 20 graduating seniors in the nanoscience major, which is part of the college's Academy of Integrated Science, Seabron accepted her degree at the Biocomplexity Institute in Steger Hall among shouts of support and cheers from her peers, friends, and family.

Social media has proven that more than just her personal connections are proud of her accomplishment.

“I didn’t expect it at all,” Seabron said of her post going viral. “It’s overwhelming, but I love it.”

Hours before commencement, Seabron spoke through tears as she reflected on her Virginia Tech experience.

“It is not easy at all being the only African-American in the room,” she said. “It’s intimidating.”

She chose not to give up, and in doing so inspired others to pursue the degree. “I’ve actually helped a few other people in my black community transfer into the nanoscience department.”

Her advice to future students comes from lessons she’s learned along the way.

“Continue to push,” she said. “Rely on your family and your friends. Reach out to your professors. Go to office hours. Create your own office hours if you have to. Be social. Step out of your comfort zone. Get to know the people in your class — they could become your study buddies. You’ll think you’re the only person struggling, but as it turns out, everybody’s struggling.”

 

Virginia Tech graduate becomes first African-American woman to earn degree in nanoscience

*****

I dream a world where man
No other man will scorn,
Where love will bless the earth
And peace its paths adorn
I dream a world where all
Will know sweet freedom's way,
Where greed no longer saps the soul
Nor avarice blights our day.
A world I dream where black or white,
Whatever race you be,
Will share the bounties of the earth
And every man is free,
Where wretchedness will hang its head
And joy, like a pearl,
Attends the needs of all mankind-
Of such I dream, my world!

Langston Hughes, I Dream A World, All Poetry dot com

Read more…

Dr. Moddie Taylor...

Moddie-Taylor-courtesy-Smithsonian-300x237.jpg
Dr. Moddie Taylor, Smithsonian

 

Topics: African Americans, Chemistry, Diversity in Science, Nanotechnology


Moddie Taylor was born on this date March 3, 1912. He was an African American chemist.

From Nymph, Alabama, Moddie Daniel Taylor was the son of Herbert L. Taylor and Celeste (Oliver) Taylor. His father worked as a postal clerk in St. Louis, Missouri, and it was there that Taylor went to school, graduating from the Charles H. Sumner High School in 1931. He then attended Lincoln University in Jefferson City, Missouri, and graduated with a B.S. in chemistry in 1935 as valedictorian and as a summa cum laude student. He began his teaching career in 1935, working as an instructor until 1939 and then as an assistant professor from 1939 to 1941 at Lincoln University, while also enrolled in the University of Chicago's graduate program in chemistry. He received his M.S. in 1939 and his Ph.D. in 1943.

Taylor married Vivian Ellis on September 8, 1937, and they had one son, Herbert Moddie Taylor. It was during 1945 that Taylor began his two years as an associate chemist for the top-secret Manhattan Project based at the University of Chicago. Taylor's research interest was in rare earth metals (elements which are the products of oxidized metals and which have special properties and several important industrial uses); his chemical contributions to the nation's atomic energy research earned him a Certificate of Merit from the Secretary of War. After the war, he returned to Lincoln University until 1948 when he joined Howard University as an associate professor of chemistry, becoming a full professor in 1959 and head of the chemistry department in 1969.

In 1960, Taylor's First Principles of Chemistry was published; also in that year the Manufacturing Chemists Association as one of the nation’s six top college chemistry teachers selected him. In 1972, Taylor was also awarded an Honor Scroll from the Washington Institute of Chemists for his contributions to research and teaching. Taylor was a member of the American Chemical Society, the American Association for the Advancement of Science, the National Institute of Science, the American Society for Testing Materials, the New York Academy of Sciences, Sigma Xi, and Beta Kappa Chi, and was a fellow of the American Institute of Chemists and the Washington Academy for the Advancement of Science. Taylor retired as a professor emeritus of chemistry from Howard University on April 1, 1976, and died of cancer in Washington, D.C., on September 15, 1976.

 

African American Registry: Dr. Moddie Taylor

Read more…

John E. Hodge...

john-e.-hodge-235x300.png
John E. Hodge, African American Registry (link below)


Topics: African Americans, Chemistry, Diversity in Science, Nanotechnology


John Edward Hodge was born on this date (October 12) in 1914. He was an African American chemist.

From Kansas City, Kansas he was the son of Anna Belle Jackson and John Alfred Hodge. His active mind found certain games and sports to be a challenge. He won a number of model airplane contests in Kansas City. He became an expert at billiards in college, and later in Peoria. Chess was another fascination for John, his father, John Alfred, and his son, John Laurent. He graduated from Sumner High School in 1932 and got his A.B. degree in 1936. Hodge received his M.A. in 1940 from the University of Kansas where he was elected to the PI-ii Beta Kappa scholastic society and the Pi Mu Epsilon honorary mathematics organization. He did his postgraduate studies at Bradley University between 1946 and 1960 and received a diploma from the Federal Executive Institute, Charlottesville, VA in 1971.

Hodges career began as oil chemist in Topeka, Kansas at the Department of Inspections. He was also a professor of chemistry at Western University, Quindaro, KS. In 1941 he began nearly 40 years of service at the USDA Nonhem Regional Research Center in Peoria, IL; where he retired in 1980. During that time (1972) he was visiting professor of chemistry at the University of Campinas, Sao Paulo, Brazil. He also received a Superior Service Award at Washington, D.C., from the U.S. Department of Agriculture in 1953, and two research team awards also. He was chairman of the Division of Carbohydrate Chemistry of the American Chemical Society in 1964, and was an active member of the cereal chemists and other scientific organizations. After retirement Hodge was an adjunct chemistry professor at Bradley University in 1984-85.

Hodge encouraged young black college students to study chemistry. He made tours of historically Black colleges in the South to assess their laboratory capabilities, and recruited summer interns for research experiences. Hodge was on the board of directors of Carver Community Center from 1952 to 1958. In 1953 he was secretary of the Citizens Committee for Peoria Public Schools; as well as secretary for the Mayor's Commission for Senior Citizens, 1982-85. Hodge was an advisory board member at the Central Illinois Agency for the Aging in 1975. John Hodge died on January 3, 1996.

 

African American Registry: John E. Hodge

Read more…

Dr. Bettye Washington Greene...

q237hs45t_thumb_large.jpeg
Science History Institute: Dr. Bettye Washington Greene

 


Topics: African Americans, Chemistry, Diversity in Science, Nanotechnology, Women in Science

 

American Chemical Society: Nanotechnology



Bettye Greene was born on March 20, 1935 in Fort Worth, Texas and earned her B.S. from the Tuskegee Institute in 1955 and her Ph.D. from Wayne State University in 1962, studying under Wilfred Heller. She began working for Dow in 1965 in the E.C. Britton Lab, where she specialized in Latex products. According to her former colleague, Rudolph Lindsey, Dr. Greene served as a Consultant on Polymers issues in the Saran Research Laboratory and the Styrene Butadiene (SB) Latex group often utilized her expertise and knowledge. In 1970, Dr. Greene was promoted to the position of senior research chemist. She was subsequently promoted to the position of senior research specialist in 1975.

In addition to her work at Dow, Bettye Greene was active in community service in Midland and was a founding member of the Delta Sigma Theta Sorority, Inc., a national service group for African-American women (actually, more likely one of the alumni chapters). Greene retired from Dow in 1990 and passed away in Midland on June 16, 1995. [1]

 

*****


Her doctoral dissertation, "Determination of particle size distributions in emulsions by light scattering" was published in 1965.

Patents:

4968740: Latex-based adhesive prepared by emulsion polymerization
4609434: Composite sheet prepared with stable latexes containing phosphorus surface groups
4506057: Stable latexes containing phosphorus surface groups [2]


Spouse: Veteran Air Force Captain William Miller Greene in 1955, she attended Wayne State University in Detroit, where she earned her Ph.D. in physical chemistry working with Wilfred Heller.

Children: Willetta Greene Johnson, Victor M. Greene; Lisa Kianne Greene [2]

 

1. Science History Institute Digital Collections: Dr. Bettye Washington Greene
2. Wikipedia/Bettye_Washington_Greene

Read more…

Dr. Dorothy Lavinia Brown...

Dorothy_Lavinia_Brown__public_domain_-1.png
Dr. Dorothy Lavinia Brown
Image Ownership: Public Domain

 

Topics: African Americans, Diversity in Science, Medical Science, Nanotechnology, Women in Science


Understanding Nano: Nanotechnology in Medicine

Dr. Dorothy Lavinia Brown was a medical pioneer, educator, and community leader. In 1948-1949 Brown became the first African American female appointed to a general surgery residency in the de jure racially segregated South. In 1956 Brown became the first unmarried woman in Tennessee authorized to be an adoptive parent, and in 1966 she became the first black woman representative to the state legislature in Tennessee.

Brown was born in Philadelphia, Pennsylvania on January 7, 1919. Within weeks after she was born, Brown’s unmarried mother Edna Brown moved to upstate New York and placed her five-month-old baby daughter in the predominantly white Troy Orphan Asylum (later renamed Vanderhyden Hall) in Troy, New York. Brown was a demonstrably bright child, and became interested in medicine after she had a tonsillectomy at age five.

When Brown was 13 years old her estranged mother reclaimed her. Subsequently, however, Brown would run away from her mother five times, returning to the orphanage each time. During her teenage years Brown worked at a Chinese laundry, and also as a mother’s helper for Mrs. W.F. Jarrett, who encouraged her desire to become a physician. At age 15, the last time Brown ran away from her mother, she enrolled herself at Troy High School. Realizing that Brown had no place to stay, the principal arranged for Brown to live with Lola and Samuel Wesley Redmon, foster parents who became a major influence in her life and from whom Brown received the security and support she needed until she graduated at the top of her high school class in 1937. Awarded a four-year scholarship by the Troy Conference Methodist Women, in 1941 Brown graduated second in her class from Bennett College in Greensboro, North Carolina.

During World War II Brown worked as an inspector for the Army Ordnance Department in Rochester, New York. In 1944 Brown began studying medicine at the Meharry Medical College in Nashville, Tennessee, receiving her Medical Degree in 1948. After serving a year-long residency internship at Harlem Hospital in New York City, Brown returned to Meharry’s George Hubbard Hospital in 1949 for her five-year residency, becoming Professor of Surgery in 1955.

In the mid-1950s an unmarried patient of Brown’s pleaded with her to adopt her newborn daughter, and in 1956 Brown became the first known single woman to adopt a child in the state of Tennessee. As a tribute to her foster mother, Brown named her daughter Lola Denise Brown.

From 1966 to 1968 Brown served in the Tennessee House of Representatives, where she introduced a controversial bill to reform the state’s abortion law to allow legalized abortions in cases of incest and rape. Brown also co-sponsored legislation that recognized Negro History Week, which later expanded to Black History Month.

 

The Black Past: Dr. Dorothy Lavinia Brown

Read more…

Dr. Gladys W. Royal...

THE_A%2526T_COLLEGE_REGISTER_1961_Gladys_Royal%252C_W._E._Reed%252C_R._L._Satoera%252C_George_Royal.jpg
Dr. Gladys Royal (left), Dr. W. E. Reed (left center), R. L. Satoera (right center) and Dr. George Royal (right), with x-ray equipment, North Carolina A&T College, 1961

By THE AGRICULTURAL AND TECHNICAL, COLLEGE, GREENSBORO, N. C. - THE A&T COLLEGE REGISTER, VOLUME XXXII, No. 8 , FRIDAY, JANUARY 13, 1961, Public Domain, https://commons.wikimedia.org/w/index.php?curid=42353373

 

Topics: African Americans, Diversity in Science, Biochemistry, Nanotechnology, Women in Science

See: Biochemistry and structural DNA nanotechnology: an evolving symbiotic relationship.


Gladys W. Royal (August 29, 1926 – November 9, 2002) is one of a small number of early African-American biochemists. Part of one of the few African-American husband-and-wife teams in science, Gladys worked with George C. Royal on research supported by the United States Atomic Energy Commission. She later worked for many years as principal biochemist at the Cooperative State Research Service of the U.S. Department of Agriculture. Royal was also active in the civil rights movement in Greensboro, North Carolina.

Royal was born Gladys Geraldine Williams on August 29, 1926, in Dallas, Texas. She graduated from Dillard University with a B.Sc. at the age of 18 in 1944. She married George C. Royal in 1947.

Royal accompanied her husband to Tuskegee, Alabama, where he taught microbiology in 1947-1948, to Ohio State University and Ohio Agricultural Experiment Station, where he was a research assistant from 1948 to 1952, and to North Carolina Agricultural and Technical College in Greensboro where he became an assistant professor of Bacteriology in 1952. At Tuskegee and Ohio State she took classes; by 1953, she was sufficiently qualified to become a professor of chemistry at North Carolina Agricultural and Technical College in Greensboro.

In 1954, Royal received her M.Sc. in organic chemistry from Tuskegee. She had also taken classes at the University of Wisconsin and at Ohio State University, from which she received her Ph.D. in 1954. Her thesis, The Influence of Rations Containing Sodium Acetate and Sodium Propionate on the Composition of Tissues From Feeder Lambs, involved experimental work in flavor chemistry, testing the effects of various feed regimens on the taste of meat.

In the late 1950s and early 1960s, the Royals collaborated on important research including that funded by the United States Atomic Energy Commission involving bone marrow transplants to treat radiation overdoses. Their work had direct relevance to cancer treatment, which used high doses of radiation and could cause tissue damage. It also reflected Cold war fears of possible nuclear attack.

African-American husband-and-wife teams in science were extremely rare in the early and mid-20th century due to the social, educational and economic climate regarding African Americans in the United States.

The Royals had six children: George Calvin Royal III, Geraldine Gynnette Royal, Guericke Christopher Royal, jazz musician Gregory Charles Royal, Michelle Renee McNear, and Eric Marcus Royal.

 

Source: Wikipedia/Gladys_W._Royal

Read more…

Dr. Mark Dean, repost...

mark-dean.jpg
Dr. Mark Dean - Biography.com

 

Topics: African Americans, Computer Science, Electrical Engineering, Nanotechnology, STEM


This is admittedly a repost that appears during the month of February. The popular celebrities of sports, music and "reality" television dominate the imaginations of youth from all cultural backgrounds. It's important especially that African American children see themselves doing and making a living at STEM careers. A diverse workforce doesn't just "happen." Like the opposite of diversity - segregation - has to be intentionally planned and executed. For our country to survive and compete in nanotechnology, it MUST be a priority.

Computer scientist and engineer Mark Dean is credited with helping develop a number of landmark technologies, including the color PC monitor, the Industry Standard Architecture system bus and the first gigahertz chip.

Synopsis

Born in Jefferson City, Tennessee, in 1957, computer scientist and engineer Mark Dean helped develop a number of landmark technologies for IBM, including the color PC monitor and the first gigahertz chip. He holds three of the company's original nine patents. He also invented the Industry Standard Architecture system bus with engineer Dennis Moeller, allowing for computer plug-ins such as disk drives and printers.

Early Life and Education

Computer scientist and inventor Mark Dean was born on March 2, 1957, in Jefferson City, Tennessee. Dean is credited with helping to launch the personal computer age with work that made the machines more accessible and powerful.

From an early age, Dean showed a love for building things; as a young boy, Dean constructed a tractor from scratch with the help of his father, a supervisor at the Tennessee Valley Authority. Dean also excelled in many different areas, standing out as a gifted athlete and an extremely smart student who graduated with straight A's from Jefferson City High School. In 1979, he graduated at the top of his class at the University of Tennessee, where he studied engineering.

Innovation with IBM

Not long after college, Dean landed a job at IBM, a company he would become associated with for the duration of his career. As an engineer, Dean proved to be a rising star at the company. Working closely with a colleague, Dennis Moeller, Dean developed the new Industry Standard Architecture (ISA) systems bus, a new system that allowed peripheral devices like disk drives, printers and monitors to be plugged directly into computers. The end result was more efficiency and better integration.

But his groundbreaking work didn't stop there. Dean's research at IBM helped change the accessibility and power of the personal computer. His work led to the development of the color PC monitor and, in 1999, Dean led a team of engineers at IBM's Austin, Texas, lab to create the first gigahertz chip—a revolutionary piece of technology that is able to do a billion calculations a second.

In all, Dean holds three of the company's original nine patents for the IBM personal computer - a market the company helped create in 1981 and, in total, has more 20 patents associated with his name.

 

Biography.com: Mark Dean, Ph.D.

Read more…

Dr. Jessica Isabelle Price...

Dr_Jessie_Isabelle_Price-560x416.jpg
Image Source: Darq Side Nerdettes dot com

 

Topics: African Americans, Diversity in Science, Microbiology, Nanotechnology, Women in Science


January 1, 1930 - November 12, 2015

Dr. Jessie Isabelle Price was a microbiologist best known for developing vaccines for common avian diseases.

Born January 1, 1930, Dr. Price was raised by her single mother who encouraged her children to work hard in school. And that advice paid off when Dr. Price graduated from her predominately white school and was accepted into Cornell University.

But just make sure she was extra ready for college, Dr. Price moved with her mother to Ithaca, New York to take advanced classes in math and English for a year. Fortunately, she didn’t have to worry about paying tuition since her New York residency qualified her for waived tuition fees.

Too bad it didn’t work that way at Cornell.

Dr. Price wanted to be a physician, but couldn’t because of the cost. Instead, she earned a Bachelor of Science in in microbiology from the College of Agriculture in 1953.

Her mentor, Dorsey Buner, suggested she take on post-grad studies, but once again, a lack of sufficient funds cut off her access.

To get around this, Dr. Price worked as a laboratory tech at the Poultry Disease Research Farm in the Veterinary College at Cornell to save post-grad money.

She eventually gained research assistant support from 1956 to 1959 and earned a Masters in veterinary bacteriology, pathology, and parasitology in 1958. Then, she went on to earn her doctorate in 1959 under the supervision of Bruner.

Her dissertation was the start of her path to creating a vaccine. She isolated and reproduced the bacterium, Pasteurella anatipestifer, in white pekin (“Long Island”) ducklings infected with a disease that was a major killer in duck farms.

Dr. Price joined the Cornell Duck Research Laboratory, and worked there from 1959 to 1977 and taught at Long Island University, where she became an adjunct professor.

In 1964, Ebony magazine featured Dr. Price and her work in an extensive photo-essay describing and showing her work on vaccine development, in the Duck Research Laboratory and on the farms.

She was awarded a National Science Foundation travel grant to present her findings at the International Congress for Microbiology in Moscow in 1966.

 

Darq Side Nerdettes - Black Women in STEAM: Dr. Jessie Isabelle Price

Read more…

Environmental Justice and ENPs...

 

Topics: African Americans, Diversity, Diversity in Science, Ecology, Environment, Nanotechnology


Abstract

The production and use of Engineered Nanoparticles (ENPs) or materials containing ENPs has increased astonishingly, leading to increased exposure to workers and consumers. The invention and applications of new materials either create new opportunities or pose new risks and uncertainties. The uncertainties concerning application of ENPs are posing disturbances to the ecosystem and human health. This review first addresses in vitro and in vivo studies conducted on the toxicity of ENPs to animals and humans. Ethical justifications are provided specially with reference to Intergenerational Justice (IRG-J) and Ecological Justice (EC-J). The social benefits and burdens of ENPs are identified for present and future generations. Some mitigation approaches for combating the potential risks posed by ENPs are proposed. Finally, suggestions for the safe handling of ENPs in future are proposed in the review.
 
*****

The term nanotechnology refers to the science of investigating and manipulating materials at atomic, molecular and macromolecular scale. (Sudarenko, 2013). Nanoparticles (NPs) are known to occur naturally (e.g., volcanic ash and forest fires), accidentally (i.e., unintended human activities) and anthropogenic (e.g., cosmetics and other consumer products). Engineered nanomaterials (ENMs) or engineered nanoparticles (ENPs) are man made materials produced deliberately for different industrial applications and most commonly having dimension from 1 to 100 nm (Auffan et al., 2009). It is widely acknowledged in the scientific community that ENPs have enormous potential to transform industrial processes in the future thereby shaping how the society and the global economy will function. They have several industrial and domestic applications in consumer products, cosmetics, agriculture, soil and groundwater remediation, electronics, energy storage, biomedical and transportation (Besha et al., 2018; Boldrin et al., 2014).

Engineered nanomaterials (ENMs) or engineered nanoparticles (ENPs) are man made materials produced deliberately for different industrial applications and most commonly having dimension from 1 to 100 nm (Auffan et al., 2009). It is widely acknowledged in the scientific community that ENPs have enormous potential to transform industrial processes in the future thereby shaping how the society and the global economy will function. They have several industrial and domestic applications in consumer products, cosmetics, agriculture, soil and groundwater remediation, electronics, energy storage, biomedical and transportation (Besha et al., 2018; Boldrin et al., 2014).

 

Sustainability and environmental ethics for the application of engineered nanoparticles
Abreham Tesfaye Beshaa, Yanju Liubc, Dawit N. Bekelebc, Zhaomin Dongd, Ravi Naidubc, Gebru Neda Gebremariama

*****


“Poison is the wind that blows from the north and south and east.” Marvin Gaye wasn’t an environmental scientist, but his 1971 single “Mercy Mercy Me (The Ecology)” provides a stark and useful environmental analysis, complete with warnings of overcrowding and climate change. The song doesn’t explicitly mention race, but its place in Gaye’s What’s Going On album portrays a black Vietnam veteran, coming back to his segregated community and envisioning the hell that people endure.

Gaye’s prophecies relied on the qualitative data of storytelling—of long-circulated anecdotes and warnings within black communities of bad air and water, poison, and cancer. But those warnings have been buttressed by study after study indicating that people of color face disproportionate risks from pollution, and that polluting industries are often located in the middle of their communities.

Late last week, even as the Environmental Protection Agency and the Trump administration continued a plan to dismantle many of the institutions built to address those disproportionate risks, researchers embedded in the EPA’s National Center for Environmental Assessment released a study indicating that people of color are much more likely to live near polluters and breathe polluted air. Specifically, the study finds that people in poverty are exposed to more fine particulate matter than people living above poverty. According to the study’s authors, “results at national, state, and county scales all indicate that non-Whites tend to be burdened disproportionately to Whites.”

 

Trump's EPA Concludes Environmental Racism Is Real
A new report from the Environmental Protection Agency finds that people of color are much more likely to live near polluters and breathe polluted air—even as the agency seeks to roll back regulations on pollution.
Vann R. Newkirk, The Atlantic

Read more…

Nanotech and Business...

JSNN.JPG
Joint School of Nanoscience and Nanoengineering: Facebook

 

Topics: African Americans, Diversity, Diversity in Science, Economics, Nanotechnology


Historically Black Colleges & Universities (HBCUs) should pursue research in the nanotech sector. Other universities are leveraging significant funding to lead the way in nanotechnology research. For instance, the Institute for Nanotechnology was established as an umbrella organization for the multi-million dollar nanotechnology research efforts at Northwestern University. The role of the Institute is to support meaningful efforts in nanotechnology, house state-of-the-art nanomaterials characterization facilities, and support individual and group efforts aimed at addressing and solving key problems in nanotechnology.As part of this effort, a $34 million, 40,000 square foot state-of-the-art Center for Nanofabrication and Molecular Self-Assembly was constructed on the Evanston, Illinois campus. The new facility, which was anchored by a $14 million grant from the Department of Health and Human Services, is one of the first federally funded facilities of its kind in the United States and home to the Institute headquarters.

Since you asked...

The Nano School

Nanotechnology is often referred to as convergent technology because it utilizes knowledge from a diverse array of disciplines including biology, chemistry, physics, engineering, and technology. JSNN has six research focus areas—nanobioscience, nanometrology, nanomaterials (with special emphasis on nanocomposite materials), nanobioelectronics, nanoenergy, and computational nanotechnology.

Our Mission

The Joint School of Nanoscience and Nanoengineering (JSNN) mission is to be a catalyst for breakthrough innovations that provides high-impact academic, industry and government research outcomes.

Our Vision

The Joint School of Nanoscience and Nanoengineering (JSNN) is a collaboration between two high research universities: North Carolina A&T State University (NC A&T SU) and The University of North Carolina at Greensboro (UNCG). Collaboration will always be a core part of JSNN’s DNA. JSNN will constantly seek out strategic collaborations with other academic institutions, industry and government organizations as a catalyst for continuing to produce research breakthroughs.

To achieve the mission, JSNN recruits students that are the best and brightest men and women from a variety of disciplines to conduct advanced research in Nanoengineering and Nanoscience. Students are challenged to choose a research area that is expected to provide significant benefit to mankind. Beyond becoming exceptional researchers, students will develop leadership and communication skills that will make them an exceptional asset in any academic, industry or government organization.

JSNN is also catalyst for economic development. The Southeastern Nanotechnology Infrastructure Corridor (SENIC) was created as a partnership between Georgia Tech and JSNN, a collaboration of NC A&T and UNCG. SENIC combines the infrastructure strengths of both Georgia Tech and the JSNN to provide academic, industry and government users affordable access to one of the largest and most modern Nano-fabrication and Nano-characterization tool sets in the country.
Read more…

Nanotechnology and People...

F0C0E23E-803B-45BF-9B9A-30B6076483DF-650x431.jpeg
Image Source: Disruption Hub (link below)

 

Topics: African Americans, Diversity, Diversity in Science, Nanotechnology


In the 1950s, physicist Richard Feynman suggested that more could be learned about materials by reducing them to their smallest possible form. This idea laid the foundations for nanotechnology – the study of matter at an atomic or molecular level. Almost 70 years down the line, however, and the field is still in the developmental stages. Nonetheless, the disruptive potential of nanotechnology is so vast that it’s well worth being aware of the technology’s trajectory. The research area is now a broad umbrella term for numerous different branches and projects. But what does it mean for businesses, and what are the obstacles to adoption?

Any technological advance is a disruption. We get the term Luddites from essentially a backlash to economic conditions in England brought on by endless war with France:

The Luddite disturbances started in circumstances at least superficially similar to our own. British working families at the start of the 19th century were enduring economic upheaval and widespread unemployment. A seemingly endless war against Napoleon’s France had brought “the hard pinch of poverty,” wrote Yorkshire historian Frank Peel, to homes “where it had hitherto been a stranger.” Food was scarce and rapidly becoming more costly. Then, on March 11, 1811, in Nottingham, a textile manufacturing center, British troops broke up a crowd of protesters demanding more work and better wages.

That night, angry workers smashed textile machinery in a nearby village. Similar attacks occurred nightly at first, then sporadically, and then in waves, eventually spreading across a 70-mile swath of northern England from Loughborough in the south to Wakefield in the north. Fearing a national movement, the government soon positioned thousands of soldiers to defend factories. Parliament passed a measure to make machine-breaking a capital offense.

But the Luddites were neither as organized nor as dangerous as authorities believed. They set some factories on fire, but mainly they confined themselves to breaking machines. In truth, they inflicted less violence than they encountered. In one of the bloodiest incidents, in April 1812, some 2,000 protesters mobbed a mill near Manchester. The owner ordered his men to fire into the crowd, killing at least 3 and wounding 18. Soldiers killed at least 5 more the next day.

What the Luddites Really Fought Against, Richard Conniff, Smithsonian Magazine

The Internet is an example of technology causing displacement and disruption. The initial lament of the "Information Superhighway" was that communities of color would be cut out because of fiber optics and technological infrastructure. That is mostly true, particularly in rural areas, but the Caveat Emptor I posted about in 2016 is the technology is enabling higher income inequality, thereby frustrations that savvy demagogues take advantage of, without a thought of solving. Some have compensated with the supercomputers in their hip pockets known as smart phones, also a byproduct of nanotechnology.

So, what is nanotechnology? Since I've spent the last 2.5 years completing a Masters and Pursuing a Ph.D. in it, here's my layman's definition of it:

Nanotechnology is anything at the nanoscale, or at 10-9 = 0.000000001 meters. Strange things occur at this scale that would shock you. Gold for example is not yellow: it's blue at some frequencies. It is manipulation of matter at this scale, which is a broad term because it's not just electronics: it's atomic, biological, chemical, molecular and supramolecular engineering to create machines, mechanisms and systems that don't precisely follow macroscopic (where WE are) material rules. Nanoscience is observation and theory at that scale; Nanoengineering is using material specifically at that scale to practical ends.

Stating the above, it's not trivial. You find you have better talents; mine in physics and materials, for example. Some have a background in chemistry and find themselves struggling in computer programming, which they never had to concentrate on, or resources for a proper programming facility in their home countries were scarce. The need to look at it from several angles and be "jack of all trades" is taxing, in a personal admittance.

My observation is: there are a lot of people of color in it, they're just not from the United States. I have as I've stated, many friends from Bangladesh, Chad, China, Korea, India, Iran, Nigeria, Sri Lanka; Sudan I was one of four African Americans (ahem: and the oldest) in the 2017 entering class, there was one in the 2018 class and a married couple from Durham that commutes to Greensboro in the 2019 class. It's slim pickings.

I'm not a xenophobe, but the STEM curriculum in the U.S. at the moment if any introduction is made at all points all students from all cultural backgrounds to the standard science and engineering fields: biology, chemistry, physics; architectural engineering, biological engineering, chemical engineering, engineering physics, industrial engineering, mechanical engineering, etc.

So, I'm going to take the month to talk about nanotechnology and people of color, as any technological disruption can be a source of opportunity or another exacerbation of the income inequality we've endured since Plymouth Rock.

I hope it's an introduction to some, an inspiration for others and a continuation to a few already in the area working on the next new thing hopefully beneficial to mankind.

When most people hear the term 'nanotechnology,' they probably think 'microscopic robots' because that is what has been popularized in the movies and television. We're not there yet. Not even close. But there are exciting developments in this new frontier that have the potential to greatly increase human comfort and improve needed products.

Some nanotech products are available today in a number of interesting applications:

Bumpers on cars
Paints and coatings to protect against corrosion, scratches and radiation
Protective and glare-reducing coatings for eyeglasses and cars
Metal-cutting tools
Sunscreens and cosmetics
Longer-lasting tennis balls
Light-weight, stronger tennis rackets
Stain-free clothing and mattresses
Dental-bonding agent
Burn and wound dressings
Ink
Automobile catalytic converters.


Nanotechnology is the manipulation of very small things for practical uses. More specifically, nanotechnology is the science and technology of precisely controlling the structure of matter at the molecular level. Nanotech is widely viewed as the most significant technological frontier currently being explored.

How Will Nanotechnology Affect the African American Community?

Nanotech products will help everyone and could provide unique investment opportunities for African Americans. Some might ask, why does this have to be a racial issue? Historically, blacks have not been allowed to freely participate in free markets for centuries, so we are just a little behind in capitalist development activities (to put it mildly). So new technological frontiers offer potential avenues for blacks to get a foothold. We have yet to make our most incredible discoveries and freed African American imaginations freely participating in the marketplace could be invaluable in nanotechnology development. Already, more than 1,700 companies in 34 nations reportedly are pursuing the commercial promise of nanotechnology. Hopefully, big money investors such as Oprah Winfrey, Bill Cosby, Russell Simmons, Jay-Z and others will take a look at nanotechnology and support entrepreneurs in this area.

 

African American Environmentalist Association: Nanotechnology

Read more…

Xenobots...

 

Topics: Applied Physics, Biology, Nanotechnology, Robotics


A team of researchers have built what they claim to be the first living robots. The “xenobots,” they say, can move, pick up objects, and even heal themselves after being cut.

The team is hoping the biological machines could one day be used to clean up microplastics in the ocean or even deliver drugs inside the human body, The Guardian reports.

To build the robots, the team used living cells from frog embryos and assembled them into primitive beings.

“These are novel living machines,” research co-lead Joshua Bongard, robotics expert at the University of Vermont, said in a statement. “They’re neither a traditional robot nor a known species of animal. It’s a new class of artifact: a living, programmable organism.”

The millimeter-length robots were designed by a supercomputer running an “evolutionary algorithm” that tested thousands of 3D designs for rudimentary life forms inside a simulation. The scientists then built a handful of the designs, which were able to propel themselves forward or fulfill a basic task inside the simulation using tweezers and cauterizing tools.

The tiny robots had about a week to ten days of “power” courtesy of living heart muscle cells that were able to expand and contract on their own.

 

Scientists Build “First Living Robots” From Frog Stem Cells
Victor Tangermann, Futurism

Read more…

Nonvolatile Charge Memory...

nonvolatile-charge-memory-device.jpg
Light irradiation-controlled nonvolatile charge memory. Left: schematic of the memory device. Right: the optical-controlled writing and erasing process of source-drain current. (Courtesy: Q Li et al J. Phys. D: Appl. Phys. 10.1088/1361-6463/ab5737)

 

Topics: Applied Physics, Device Physics, Electrical Engineering, Materials Science, Nanotechnology


Qinliang Li, Cailei Yuan and Ting Yu from Jiangxi Normal University, along with Qisheng Wang and Jingbo Li from South China Normal University, are developing nonvolatile charge memory devices with simple structures. Wang explains how the optically controllable devices combine the functions of light sensing and electrical storage.

The research is reported in full in Journal of Physics D: Applied Physics, published by IOP Publishing – which also publishes Physics World.

What was the motivation for the research and what problem were you trying to solve?

 


Nonvolatile memory devices are central to modern communication and information technology. Among various material systems, emerging two dimensional (2D) materials offer a promising platform for next-generation data-storage devices due to their unique planar structure and brilliant electronic properties. However, 2D materials-based nonvolatile memory devices have complicated architectures with multilayer stacking of 2D materials, metals, organics or oxides. This limits the capacity for device miniaturization, scalability and integration functionality.

 


In this work, we are trying to design a nonvolatile charge memory with simple device architecture. We also expect to explore a new type of optical control on the charge storage devices, which may bring us smart operation on data deposition and communication.

 

Nonvolatile charge memory device shows excellent room-temperature performance, Physics World
Qisheng Wang is professor at the Institute of Semiconductor Science and Technology, South China Normal University

Read more…

Electron River...

electron_river_no_foam300.jpg
A river made of graphene with the electrons flowing like water.
Courtesy: Ryan Allen and Peter Allen, Second Bay Studios

 

Topics: Electron Configuration, Graphene, Nanotechnology


Electrons can behave like a viscous liquid as they travel through a conducting material, producing a spatial pattern that resembles water flowing through a pipe. So say researchers in Israel and the UK who have succeeded in imaging this hydrodynamic flow pattern for the first time using a novel scanning probe technique. The result will aid developers of future electronic devices, especially those based on 2D materials like graphene in which electron hydrodynamics is important.

We are all familiar with the distinctive patterns formed by water flowing in a river or stream. When the water encounters an obstacle – such as the river bank or a boat – the patterns change. The same should hold true for electron flow in a solid if the interactions between electrons are strong. This rarely occurs under normal conditions, however, since electrons tend to collide with defects and impurities in the material they travel through, rather than with each other.

Making electrons hydrodynamic

Conversely, if a material is made very clean and cooled to low temperatures, it follows that electrons should travel across it unperturbed until they collide with its edges and walls. The resulting ballistic transport allows electrons to flow with a uniform current distribution because they move at the same rate near the walls as at the center of the material.

If the temperature of this material is then increased, the electrons can begin to interact. In principle, they will then scatter off each other more frequently than they collide with the walls. In this highly interacting, hydrodynamic regime, the electrons should flow faster near the center of a channel and slower near its walls – the same way that water behaves when it flows through a pipe.

 

Electrons flow like water in ultra-pure graphene, Belle Dumé, Physics World

Read more…

The Next FET...

CNTFET.png
Source: Modeling Carbon Nanotube FET Physics in COMSOL Multiphysics®
 

Topics: Applied Physics, Carbon Nanotubes, Field Effect Transistors, Nanotechnology


Silicon field-effect transistors (FETs) were developed in the late 1950s as a scaled-down, energy-efficient substitute for bipolar junction transistors. They paved the way for the high-density integrated circuits that today underlie most electronics (see the article by Alan Fowler, Physics Today, October 1993, page 59). With their lower gate voltages, carbon nanotube FETs could surpass silicon FET energy efficiency by nearly a factor of 10. In 2013 Subhasish Mitra, Max Shulaker (then at Stanford University), and coworkers made the first CNFET microprocessor; it comprised 178 transistors and could run a single operation.

Variability caused by the production process has made moving beyond that proof-of-concept computer challenging. Gage Hills, Christian Lau, and coworkers in Shulaker’s group at MIT have now overcome that hurdle with a protocol for wafer-scale CNFET microprocessor production. Their technique is also compatible with existing CMOS infrastructure, which lowers the bar for future commercial implementation.

To remove carbon nanotube aggregates—a common contaminant from CNT deposition on silicon wafers—the researchers spin-coated a layer of adhesive polymer over the device and then removed the aggregates using ultrasonic vibrations. In previous attempts, sonication damaged the nonaggregated CNTs. Using the photoresist binds them to the wafer, which preserves their function while removing more than 99% of the aggregates.

 

Production of carbon nanotube microprocessors gets scaled up
Christine Middleton, Physics Today

Read more…

2D MXenes...

solar-farm-662095604-iStock_Milos-Muller.jpg
Helper two-dimensional metal-carbide layers could improve perovskite solar cell stability and help make these complex solar cells a viable green energy option. Credit: iStock Milos-Muller

 

Topics: Condensed Matter Physics, Green Tech, Materials Science, Metamaterials, Nanotechnology, Solar Power


With the reality of climate change looming, the importance of realistic green energy sources is higher than ever. Solar cells are one promising avenue, as they can convert readily available visible and ultraviolet energy into usable electricity. In particular, perovskite materials sandwiched between other support layers have demonstrated impressive power conversion efficiencies. Current challenges reside in optimizing perovskite/support layer interfaces, which can directly impact power conversion and cell degradation. Researchers Antonio Agresti et al. under the direction of Aldo Di Carlo at the University of Rome Tor Vergata in Italy have investigated how cells containing two-dimensional titanium-carbide MXene support layers could improve perovskite solar cell performance.

To obtain good power conversion within a perovskite solar cell, all layers and layer interfaces within the cell must have good compatibility. Typical cells contain the active perovskite material sandwiched between two charge transport layers, which are then adjacent to their corresponding electrodes. Support layers may also be added. Charge mobility, energy barriers, interface energy alignment, and interfacial vacancies all impact compatibility and subsequent cell performance and stability. Thus, engineering well-suited interfaces with the cell is paramount to cell success and long-term stability, an important criterion for potential commercialization.

Two-dimensional buffer materials could help to modify and promote useful interface interactions. MXenes, a growing class of two-dimensional transitional metal carbides, nitrides, and carbonitrides, have shown impressive electronic properties that are easily tuned via surface modification. For example, the band gap of an MXene can be modified by changing the surface termination group from an oxygen atom to a hydroxide molecule. Additionally, MXene composition impacts the overall material performance. This type of fine-tuning allows impressive control over MXene properties and makes them ideal for interface adjustments.

 

Two-dimensional MXenes improve perovskite solar cell efficiency
Amanda Carr, Physics World

#P4TC: MXenes...August 24, 2015

Read more…