cancer (3)

Brookhaven and Fake News...

12364614287?profile=RESIZE_710x

Climate of fear Anti-science protestors led to the closure of the High Flux Beam Reactor at the Brookhaven National Laboratory in the US 25 years ago using tactics that are widespread today. (Courtesy: iStock/DanielVilleneuve)

Topics: Biology, Cancer, Carl Sagan, Civilization, Climate Change, Philosophy, Physics

I typically don't comment on articles, but this one resonated with my memories of Carl Sagan desperately trying to raise the critical thinking skills of an entire essential nation with "The Demon-Haunted World: Science as a Candle in the Dark." The host of Cosmos would succumb to pneumonia as a consequence of bone marrow disease. I will be the age Carl was when he passed away this year, 62, but not as accomplished as he did in the six decades we all had access to him.

The framework of our current duress was already here in the form of celebrity worship, gossip columns, and talk shows where sensationalism equaled eyeballs, just as the Internet rouses the primitive lizard portion of our brains to be afraid, get angry, and "buy-purchase-consume" products (a friend who's a sound engineer likes to say that a lot).

Underhand tactics by environmental activists led to the closure of a famous physics facility 25 years ago. We can still learn much from the incident, says Robert P Crease.

Fake facts, conspiracy theories, nuclear fear, science denial, baseless charges of corruption, and the shouting down of reputable health officials. All these things happened 25 years ago, long before the days of social media, in a bipartisan, celebrity-driven episode of science denial.  Yet the story offers valuable lessons for what works and what does not (mostly the latter) for anyone wanting to head off such incidents.

The episode in question concerned one of the more valuable scientific facilities in the US, the High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory. As I mentioned in a previous column and in my book The Leak, the HFBR was a successful research instrument that was used to make medical isotopes and study everything from superconductors to proteins and metals. “Experimentalists saw the reactor as the place to go,” recalls the physicist William Magwood IV, then at the US Department of Energy.

But in 1997, lab scientists discovered a leak of water from a pool located in the same building as the reactor, where its spent fuel was stored. The leak contained tritium, a radioactive isotope of hydrogen that decays with a half-life of about 12 years, releasing low-energy electrons that can be stopped by a few sheets of paper. The total amount of tritium in the leak was about that in typical self-illuminating “EXIT” signs.

The protestors’ tactics are a familiar part of today’s political environment: tell people they are in danger and insist that anyone who says otherwise is lying.

The article goes on to recount the actor Alec Baldwin using his celebrity to put a ten-year-old child on the Montell Williams Show to claim that the tritium and the research facility caused his cancer. It wasn't true, but it was LOUD, drowning out the experts who are used to spirited peer review and erudite discussions of research, not tears and gnashing of teeth.

Montell Williams ended his talk show after announcing that he had multiple sclerosis. Alec Baldwin, though I enjoyed his SNL skits, has other pressing issues.

I have a physicist friend who's using tritium in his research with optical tweezers, separating isotopes to detect and treat cancers, among other applications. I am opting not to give his website as those same elements described in the article about Brookhaven National Labs have metastasized into our current societal mass psychosis. If his research leads to your cancer cure, you can thank him later.

Twenty-five years ago, we weren't as far along in climate disruption as we are now. Twenty-five years ago, CNN was 19 years old, and its clones, Fox and MSNBC, were 3 years old. Five years after the Y2K scare (exquisitely setting us up for election 2000 and 9/11), humanity further siloed itself into warring tribes, first posting on Internet bulletin boards, MySpace. Then, the logical progression was to Facebook, Twitter (now X), and its myriad progeny.

A side note: CERN would go on to discover the Higgs Boson because we, in the spirit of fiscal stewardship, closed the superconducting collider in Waxahachie, Texas, 48 kilometers south of Dallas. Peter Higgs and François Englert owe their 2013 Physics Nobel Prize to Switzerland. U-S-A. U-S-A.

How much further along in cancer research and nuclear energy as an alternative to fossil fuels would we be if, prior to Facebook and the former Twitter, we exercised a little critical thinking and common sense? I'm not talking about tritium, but fission reactors, which we know how to build (fusion, though cleaner and less radioactive, is still far off), but the environmental activists have terrorized anyone from building newer and safer facilities that might have had some positive impact on our warming climate. To paraphrase a famous saying, "Don't let the perfect be the enemy of the good." Our air quality improved during the pandemic, so the logic leads to upgrading public transportation to something matching other countries that rely on it more than we do, or within our borders, the subway systems in New York, New Jersey, Philadelphia, or Washington, DC. You end up doing nothing of any importance. We could replace the fission reactors one by one as fusion comes online.

That is what enrages and disappoints me.

The American reactor that was closed by fake news, Robert P Crease, Physics World

Read more…

LNPs...

10996530085?profile=RESIZE_400x

Cancer cells are one of the main targets for expanded mRNA-LNP use. Credit: Iliescu Catalin / Alamy

Topics: Biology, Biotechnology, Cancer, COVID-19, Nanotechnology

Note: This is an advertisement on Nature Portfolio discussing that there may be a silver lining in the pandemic we've all experienced.

Lipid nanoparticles (LNPs) transport small molecules into the body. The most well-known LNP cargo is mRNA, the key constituent of some of the early vaccines against COVID-19. But that is just one application: LNPs can carry many different types of payload and have applications beyond vaccines.

Barbara Mui has been working on LNPs (and their predecessors, liposomes) since she was a Ph.D. student in Pieter Cullis’s group in the 1990s. “In those days, LNPs encapsulated anti-cancer drugs,” says Mui, who is currently a senior scientist at Acuitas. This company developed the LNPs used in the Pfizer-BioNTech mRNA vaccine against SARS-CoV-2. She says it soon became clear that LNPs worked even better as carriers of polynucleotides. “The first one that worked really well was encapsulating small RNAs,” Mui recalls.

But it was mRNA where LNPs proved most effective, primarily because LNPs are comprised of positively charged lipid nanoparticles that encapsulate negatively charged mRNA. Once in the body, LNPs enter cells via endocytosis into endosomes and are released into the cytoplasm. “Without the specially designed chemistry, the LNP and mRNA would be degraded in the endosome,” says Kathryn Whitehead, professor in the departments of chemical engineering and biomedical engineering at Carnegie Mellon University.

LNPs are an ideal delivery system for mRNA. “COVID accelerated the acceptance of LNPs, and people are more interested in them,” says Mui. LNP-mRNA vaccines for other infectious diseases, such as HIV or malaria, or for non-communicable diseases, such as cancer, could be next. And the potential doesn’t end with mRNA; there is even more scope to adapt LNPs to carry different types of cargo. But to realize these potential benefits, researchers first need to overcome challenges and decrease toxicity, increase their ability to escape from the endosomes, increase their thermostability, and work out how to effectively target LNPs to organs across the body.

Another potential application for LNPs is immunotherapy. Genetically modifying lymphocytes such as T cells or NK cells with chimeric antibody receptors (CARs) has proven useful in blood cancers. Often this process involves extracting lymphocytes from the blood of the person receiving the treatment, editing the cells in culture to express CARs, and then reintroducing them into the blood. However, LNPs could make it possible to express the desired CAR in vivo by shuttling CAR mRNA to the target lymphocytes. Mui has been involved in vivo studies showing this process works in mouse T cells (Rurik, J.G. et al. Science 375, 91-96, 2022). And Vita Golubovskaya, VP of research and development at ProMab Biotechnologies, presented preliminary data (available here) at the CAR-TCR Summit in September 2022 regarding LNPs that direct CAR-mRNA to NK cells, which can then kill target cells. “The RNA-LNP is a very exciting and novel technology that can be used for delivering CAR and bi-specific antibodies against cancer,” she says.

Beyond COVID vaccines: what’s next for lipid nanoparticles? Nature Portfolio

Read more…

Microbots and Chemo..

10242132259?profile=RESIZE_584x

Credit: Gao Wang

Topics: Biology, Cancer, Chemotherapy, Robotics

Chemotherapy disrupts cancer cells’ ability to reproduce by frustrating cell division and damaging the cells’ DNA. In response to the pharmaceutical onslaught, cancer cells acquire mutations that reduce the therapy’s effectiveness. Compounding the challenge of fighting cancer: Under chemical and other stresses, mutation rates increase.

A team led by Princeton University’s Robert Austin and Chongqing University’s Liyu Liu has developed a novel approach to study—and potentially thwart—cancer cells’ adaptation to chemotherapy. Their cancer cell analogs are wheeled, cylindrical robots about 65 mm in diameter and 60 mm in height (see photo above). Fifty of the robots roll independently of each other over a square table, whose 4.2 × 4.2 m2 surface is covered by 2.7 million LEDs (see photo below). Light from the LEDs serves as the robots’ food. Once a robot has “eaten” the light beneath it, the corresponding LEDs are dimmed until they recover a fixed time later.

The bottom surface of each robot is equipped with four semiconductor-based sensors that can detect the intensities and spatial gradients of the three colors of light emitted by the light table: red, green, and blue (RGB). Each robot’s six-byte genome analog determines how sensitive it is to the three colors. The sensitivity, in turn, determines how readily the robot moves in response to the colors’ intensities and spatial gradients.

Evolving robots could optimize chemotherapy, Charles Day, Physics Today

Read more…