Rate of Expansion...

11117093482?profile=RESIZE_710x

A University of Minnesota Twin Cities-led team used a first-of-its-kind technique to measure the Universe's expansion rate, providing insight that could help more accurately determine the Universe’s age and help physicists and astronomers better understand the cosmos. Credit: NASA, ESA, and S. Rodney (JHU) and the FrontierSN team; T. Treu (UCLA), P. Kelly (UC Berkeley), and the GLASS team; J. Lotz (STScI) and the Frontier Fields team; M. Postman (STScI) and the CLASH team; and Z. Levay (STScI)

Topics: Astronomy, Astrophysics, Cosmology, General Relativity

Thanks to data from a magnified, multiply-imaged supernova, a team led by University of Minnesota Twin Cities researchers have successfully used a first-of-its-kind technique to measure the universe's expansion rate. Their data provide insight into a longstanding debate in the field and could help scientists more accurately determine the universe's age and better understand the cosmos.

The work is divided into two papers published in Science and The Astrophysical Journal.

In astronomy, there are two precise measurements of the expansion of the universe, also called the "Hubble constant." One is calculated from nearby observations of supernovae, and the second uses the "cosmic microwave background," or radiation that began to stream freely through the universe shortly after the Big Bang.

However, these two measurements differ by about 10 percent, which has caused widespread debate among physicists and astronomers. If both measurements are accurate, that means scientists' current theory about the makeup of the universe is incomplete.

"If new, independent measurements confirm this disagreement between the two measurements of the Hubble constant, it would become a chink in the armor of our understanding of the cosmos," said Patrick Kelly, lead author of both papers and an assistant professor in the University of Minnesota School of Physics and Astronomy.

First-of-its-kind measurement of the universe's expansion rate weighs in on a longstanding debate. University of Minnesota, Phys.org.

E-mail me when people leave their comments –

You need to be a member of Blacksciencefictionsociety to add comments!

Join Blacksciencefictionsociety