Credit: Matt Harrison Clough (original image at link)
Topics: Entanglement, High Energy Physics, Particle Physics, Quantum Mechanics
Breaking the rules is exciting, especially if they have been held for a long time. This is true not just in life but also in particle physics. Here the rule I’m thinking of is called “lepton flavor universality,” and it is one of the predictions of our Standard Model of particle physics, which describes all the known fundamental particles and their interactions (except for gravity). For several decades after the invention of the Standard Model, particles seemed to obey this rule.
Things started to change in 2004 when the E821 experiment at Brookhaven National Laboratory on Long Island announced its measurement of a property of the muon—a heavy version of the electron—known as its g-factor. The measurement wasn’t what the Standard Model predicted. Muons and electrons are both parts of a class of particles called leptons (along with a third particle, the tau, as well as the three generations of neutrinos). The rule of lepton flavor universality says that because electrons and muons are charged leptons, they should all interact with other particles in the same way (barring small differences related to the Higgs particle). If they don’t, then they violate lepton flavor universality—and the unexpected g-factor measurement suggested that’s just what was happening.
If particles really were breaking this rule, that would be exciting in its own right and also because physicists believe that the Standard Model can’t be the ultimate theory of nature. The theory doesn’t explain why neutrinos have mass, what makes up the invisible dark matter that seems to dominate the cosmos, or why matter won out over antimatter in the early universe. Therefore, the Standard Model must be merely an approximate description that we will need to supplement by adding new particles and interactions. Physicists have proposed a huge number of such extensions, but at most one of these theories can be correct, and so far none of them has received any direct confirmation. A measured violation of the Standard Model would be a flashlight pointing the way toward this higher theory we seek.
Rule-Breaking Particles Pop Up in Experiments around the World, Andreas Crivellin, Scientific American
Comments