The design concept of BWXT Advanced Nuclear Reactor. BWX Technologies
Topics: Applied Physics, Alternate Energy, Climate Change, Nuclear Power
According to the US Energy Information Administration, the US uses a mixture of 60.8% fossil fuel sources to generate 2,504 billion kilowatt hours of energy. Our nuclear expenditure is a paltry 18.9%. The totality of renewable sources (wind, hydropower, solar, biomass, and geothermal) is a little higher: 20.1%. This is the crux of the "Green New Deal."
Though I long for the cleaner, neater version of nuclear power in fusion, it's kind of hard to mimic the pressures and magnetic fields necessary to spark essentially a mini sun on the planet. I think the resistance to nuclear fission is cultural: from the atomic bomb, Oppenheimer quoting the Bhagavad-Gita at the first successful testing, a classic "what have we done" trope. Popular fiction emphasizes doomsday scenarios and radioactive zombies. Honorable mention: Space 1999, which like zombies I doubt could ever happen, but it kept my attention in my youth. There are also genuine concerns about Chernobyl (still in Ukraine), Three-Mile Island, and Fukushima Daichi that come to the public's mind.
The reason the percentages on fossil fuels are so high is that they release extreme amounts of energy to superheat water for turbines to turn magnets superfast in copper coils. That is how most of the electricity we consume is made.
France currently generates 70% of its energy from nuclear power plants, with plans to reduce this to 50% as they mix in renewables. This is proportional to the percentage the US already has in renewables. My only caveat is an obsolescence plan for solar panels (they have to be implanted with caustic impurities to MAKE them conductive, and after twenty years, could end up in a landfill near humans). Battery-operated vehicles are fine, but Lithium has to be mined, it requires a lot of water, typically the indigenous peoples near the mines don't make a profit, and their land and resources are spoiled.
If we truly are going to transition from fossil fuels to "cleaner energy," I think we should realize that power plant designs have improved greatly since the aforementioned disasters.
As an engineer, I always tried to follow this edict from my father: "Experience isn't the best teacher: other people's experiences are the best teacher." In short, learn from others' mistakes, and try to not repeat them. It works in other nontechnical areas of life as well.
I (fingers crossed) assume nuclear power plant design engineers follow something similar to improve on future designs for safety, and as we've been exposed to with the war in Ukraine, global energy security.
I'm proposing an "everything on the table strategy," not Pollyanna. By the way, our "carbon footprint" appears to be a boondoggle by the industries that caused our current malaise.
The U.S. Department of Energy's Advanced Reactor Demonstration Program commonly referred to as ARDP, is designed to help our domestic nuclear industry demonstrate its advanced reactor designs on accelerated timelines. This will ultimately help us build a competitive portfolio of new U.S. reactors that offer significant improvements over today’s technology.
The advanced reactors selected for risk-reduction awards are an excellent representation of the diverse designs currently under development in the United States. They range from advanced light-water-cooled small modular reactors to new designs that use molten salts and high-temperature gases to flexibly operate at even higher temperatures and lower pressures.
All of them have the potential to compete globally once deployed. They will offer consumers more access to a reliable, clean power source that can be depended on in the near future to flexibly generate electricity, drive industrial processes, and even provide potable drinking water to communities in water-scarce locations.
5 Advanced Reactor Designs to Watch in 2030, Alice Caponiti, Deputy Assistant Secretary for Reactor Fleet and Advanced Reactor Deployment, Office of Nuclear Energy
Comments