nuclear power (2)



Topics: Alternate Energy, Climate Change, Nuclear Power, Thorium

The Royal Society of Chemistry: Thorium (named for a certain Marvel character).

If China’s experimental reactor is a success it could lead to commercialization and help the nation meet its climate goals.

Scientists are excited about an experimental nuclear reactor using thorium as fuel, which is about to begin tests in China. Although this radioactive element has been trialed in reactors before, experts say that China is the first to have a shot at commercializing the technology.

The reactor is unusual in that it has molten salts circulating inside it instead of water. It has the potential to produce nuclear energy that is relatively safe and cheap, while also generating a much smaller amount of very long-lived radioactive waste than conventional reactors.

Construction of the experimental thorium reactor in Wuwei, on the outskirts of the Gobi Desert, was due to be completed by the end of August — with trial runs scheduled for this month, according to the government of Gansu province.

Thorium is a weakly radioactive, silvery metal found naturally in rocks, and currently has little industrial use. It is a waste product of the growing rare-earth mining industry in China and is, therefore, an attractive alternative to imported uranium, say researchers.

China prepares to test thorium-fueled nuclear reactor, Smriti Mallapaty, Nature

Read more…

Nearing Ignition...


An artist’s rendering shows how the National Ignition Facility’s 192 beams enter an eraser-size cylinder of gold and heat it from the inside to produce x-rays, which then implode the fuel capsule at its center to create fusion.


Topics: Energy, Environment, Modern Physics, Nuclear Fusion, Nuclear Power

More than a decade ago, the world’s most energetic laser started to unleash its blasts on tiny capsules of hydrogen isotopes, with managers promising it would soon demonstrate a route to limitless fusion energy. Now, the National Ignition Facility (NIF) has taken a major leap toward that goal. Last week, a single laser shot sparked a fusion explosion from a peppercorn-size fuel capsule that produced eight times more energy than the facility had ever achieved: 1.35 megajoules (MJ)—roughly the kinetic energy of a car traveling at 160 kilometers per hour. That was also 70% of the energy of the laser pulse that triggered it, making it tantalizingly close to “ignition”: a fusion shot producing an excess of energy.

 “After many years at 3% of ignition, this is super exciting,” says Mark Herrmann, head of the fusion program at Lawrence Livermore National Laboratory, which operates NIF.

NIF’s latest shot “proves that a small amount of energy, imploding a small amount of mass, can get fusion. It’s a wonderful result for the field,” says physicist Michael Campbell, director of the Laboratory for Laser Energetics (LLE) at the University of Rochester.

“It’s a remarkable achievement,” adds plasma physicist Steven Rose, co-director of the Centre for Inertial Fusion Studies at Imperial College London. “It’s made me feel very cheerful. … It feels like a breakthrough.”

And it is none too soon, as years of slow progress have raised questions about whether laser-powered fusion has a practical future. Now, according to LLE Chief Scientist Riccardo Betti, researchers need to ask: “What is the maximum fusion yield you can get out of NIF? That’s the real question.”

Fusion, which powers stars, forces small atomic nuclei to meld together into larger ones, releasing large amounts of energy. Extremely hard to achieve on Earth because of the heat and pressure required to join nuclei, fusion continues to attract scientific and commercial interest because it promises copious energy, with little environmental impact.

With explosive new result, laser-powered fusion effort nears ‘ignition’, Daniel Clery, Science Magazine

Read more…