nuclear power (3)

ARDP...

10736885455?profile=RESIZE_400x

The design concept of BWXT Advanced Nuclear Reactor. BWX Technologies

Topics: Applied Physics, Alternate Energy, Climate Change, Nuclear Power

According to the US Energy Information Administration, the US uses a mixture of 60.8% fossil fuel sources to generate 2,504 billion kilowatt hours of energy. Our nuclear expenditure is a paltry 18.9%. The totality of renewable sources (wind, hydropower, solar, biomass, and geothermal) is a little higher: 20.1%. This is the crux of the "Green New Deal."

Though I long for the cleaner, neater version of nuclear power in fusion, it's kind of hard to mimic the pressures and magnetic fields necessary to spark essentially a mini sun on the planet. I think the resistance to nuclear fission is cultural: from the atomic bomb, Oppenheimer quoting the Bhagavad-Gita at the first successful testing, a classic "what have we done" trope. Popular fiction emphasizes doomsday scenarios and radioactive zombies. Honorable mention: Space 1999, which like zombies I doubt could ever happen, but it kept my attention in my youth. There are also genuine concerns about Chernobyl (still in Ukraine), Three-Mile Island, and Fukushima Daichi that come to the public's mind.

The reason the percentages on fossil fuels are so high is that they release extreme amounts of energy to superheat water for turbines to turn magnets superfast in copper coils. That is how most of the electricity we consume is made.

France currently generates 70% of its energy from nuclear power plants, with plans to reduce this to 50% as they mix in renewables. This is proportional to the percentage the US already has in renewables. My only caveat is an obsolescence plan for solar panels (they have to be implanted with caustic impurities to MAKE them conductive, and after twenty years, could end up in a landfill near humans). Battery-operated vehicles are fine, but Lithium has to be mined, it requires a lot of water, typically the indigenous peoples near the mines don't make a profit, and their land and resources are spoiled.

If we truly are going to transition from fossil fuels to "cleaner energy," I think we should realize that power plant designs have improved greatly since the aforementioned disasters.

As an engineer, I always tried to follow this edict from my father: "Experience isn't the best teacher: other people's experiences are the best teacher." In short, learn from others' mistakes, and try to not repeat them. It works in other nontechnical areas of life as well.

I (fingers crossed) assume nuclear power plant design engineers follow something similar to improve on future designs for safety, and as we've been exposed to with the war in Ukraine, global energy security.

I'm proposing an "everything on the table strategy," not Pollyanna. By the way, our "carbon footprint" appears to be a boondoggle by the industries that caused our current malaise.

The U.S. Department of Energy's Advanced Reactor Demonstration Program commonly referred to as ARDP, is designed to help our domestic nuclear industry demonstrate its advanced reactor designs on accelerated timelines. This will ultimately help us build a competitive portfolio of new U.S. reactors that offer significant improvements over today’s technology.

The advanced reactors selected for risk-reduction awards are an excellent representation of the diverse designs currently under development in the United States. They range from advanced light-water-cooled small modular reactors to new designs that use molten salts and high-temperature gases to flexibly operate at even higher temperatures and lower pressures.

All of them have the potential to compete globally once deployed. They will offer consumers more access to a reliable, clean power source that can be depended on in the near future to flexibly generate electricity, drive industrial processes, and even provide potable drinking water to communities in water-scarce locations.

5 Advanced Reactor Designs to Watch in 2030, Alice Caponiti, Deputy Assistant Secretary for Reactor Fleet and Advanced Reactor Deployment, Office of Nuclear Energy

Read more…

Thorium...

9567417493?profile=RESIZE_584x

Topics: Alternate Energy, Climate Change, Nuclear Power, Thorium

The Royal Society of Chemistry: Thorium (named for a certain Marvel character).

If China’s experimental reactor is a success it could lead to commercialization and help the nation meet its climate goals.

Scientists are excited about an experimental nuclear reactor using thorium as fuel, which is about to begin tests in China. Although this radioactive element has been trialed in reactors before, experts say that China is the first to have a shot at commercializing the technology.

The reactor is unusual in that it has molten salts circulating inside it instead of water. It has the potential to produce nuclear energy that is relatively safe and cheap, while also generating a much smaller amount of very long-lived radioactive waste than conventional reactors.

Construction of the experimental thorium reactor in Wuwei, on the outskirts of the Gobi Desert, was due to be completed by the end of August — with trial runs scheduled for this month, according to the government of Gansu province.

Thorium is a weakly radioactive, silvery metal found naturally in rocks, and currently has little industrial use. It is a waste product of the growing rare-earth mining industry in China and is, therefore, an attractive alternative to imported uranium, say researchers.

China prepares to test thorium-fueled nuclear reactor, Smriti Mallapaty, Nature

Read more…

Nearing Ignition...

9438571460?profile=RESIZE_584x

An artist’s rendering shows how the National Ignition Facility’s 192 beams enter an eraser-size cylinder of gold and heat it from the inside to produce x-rays, which then implode the fuel capsule at its center to create fusion.

LAWRENCE LIVERMORE NATIONAL LABORATORY

Topics: Energy, Environment, Modern Physics, Nuclear Fusion, Nuclear Power

More than a decade ago, the world’s most energetic laser started to unleash its blasts on tiny capsules of hydrogen isotopes, with managers promising it would soon demonstrate a route to limitless fusion energy. Now, the National Ignition Facility (NIF) has taken a major leap toward that goal. Last week, a single laser shot sparked a fusion explosion from a peppercorn-size fuel capsule that produced eight times more energy than the facility had ever achieved: 1.35 megajoules (MJ)—roughly the kinetic energy of a car traveling at 160 kilometers per hour. That was also 70% of the energy of the laser pulse that triggered it, making it tantalizingly close to “ignition”: a fusion shot producing an excess of energy.

 “After many years at 3% of ignition, this is super exciting,” says Mark Herrmann, head of the fusion program at Lawrence Livermore National Laboratory, which operates NIF.

NIF’s latest shot “proves that a small amount of energy, imploding a small amount of mass, can get fusion. It’s a wonderful result for the field,” says physicist Michael Campbell, director of the Laboratory for Laser Energetics (LLE) at the University of Rochester.

“It’s a remarkable achievement,” adds plasma physicist Steven Rose, co-director of the Centre for Inertial Fusion Studies at Imperial College London. “It’s made me feel very cheerful. … It feels like a breakthrough.”

And it is none too soon, as years of slow progress have raised questions about whether laser-powered fusion has a practical future. Now, according to LLE Chief Scientist Riccardo Betti, researchers need to ask: “What is the maximum fusion yield you can get out of NIF? That’s the real question.”

Fusion, which powers stars, forces small atomic nuclei to meld together into larger ones, releasing large amounts of energy. Extremely hard to achieve on Earth because of the heat and pressure required to join nuclei, fusion continues to attract scientific and commercial interest because it promises copious energy, with little environmental impact.

With explosive new result, laser-powered fusion effort nears ‘ignition’, Daniel Clery, Science Magazine

Read more…