Image Source: Aventurine |
The perfect performance of superconductors could revolutionize everything from grid-scale power infrastructure to consumer electronics, if only they could be coerced into operating above frigid temperatures. Even so-called high-temperature superconductors (HTS) must be chilled to hundreds of degrees Fahrenheit below zero.
Now, scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Yale University have discovered new, surprising behavior by electrons in a HTS material. The results, published July 27 in the journal Nature, describe the symmetry-breaking flow of electrons through copper-oxide (cuprate) superconductors. The behavior may be linked to the ever-elusive mechanism behind HTS.
"Our discovery challenges a cornerstone of condensed matter physics," said lead author and Brookhaven Lab physicist Jie Wu. "These electrons seem to spontaneously 'choose' their own paths through the material—a phenomenon in direct opposition to expectations."
Strange electrons break the crystal symmetry of high-temperature superconductors, Brookhaven National Laboratory, Phys.org
Comments