BLOGS

superconductors (2)

Boiling Superconductivity...

Hydride.png
Under pressure: calculated structure of lithium magnesium hydride. Lithium atoms appear in green, magnesium in blue and hydrogen in red. (Courtesy: Ying Sun et al/Phys. Rev. Lett.)

 

Topics: Chemistry, Materials Science, Nanotechnology, Superconductors


A material that remains a superconductor when heated to the boiling point of water has been predicted by physicists in China. Hanyu Liu, Yanming Ma and colleagues at Jilin University have calculated that lithium magnesium hydride will superconduct at temperatures as high as 473 K (200 °C).

The catch is that the hydrogen-rich material must be crushed at 250 GPa, which is on par with pressures at the center of the Earth. While such a pressure could be achieved in the lab, it would be very difficult to perform an experiment to verify the prediction. The team’s research could, however, lead to the discovery of more practical high-temperature superconductors.

Superconductors are materials that, when cooled below a critical temperature, will conduct electricity with zero resistance. Most superconductors need to be chilled to very low temperatures, so the holy grail of superconductivity research is to find a substance that will superconduct at room temperature. This would result in lossless electricity transmission and boost technologies that rely on the generation or detection of magnetic fields.

 

Superconductivity at the boiling temperature of water is possible, say physicists
Hamish Johnston, Physics World

Read more…
Superconductors' never-ending flow of electrical current could provide new options for energy storage and superefficient electrical transmission and generation. But the signature zero electrical resistance of superconductors is reached only below a certain critical temperature and is very expensive to achieve. Physicists in Serbia believe they've found a way to manipulate superthin, waferlike monolayers of superconductors, thus changing the material's properties to create new artificial materials for future devices. This image shows a liquid phase graphene film deposited on PET substrate. Credit: Graphene Laboratory, University of Belgrade

 

Topics: Applied Physics, Superconductors, Thin Films


Superconductors' never-ending flow of electrical current could provide new options for energy storage and superefficient electrical transmission and generation, to name just a few benefits. But the signature zero electrical resistance of superconductors is reached only below a certain critical temperature, hundreds of degrees Celsius below freezing, and is very expensive to achieve.

Physicists from the University of Belgrade in Serbia believe they've found a way to manipulate superthin, waferlike monolayers of superconductors, such as graphene, a monolayer of carbon, thus changing the material's properties to create new artificial materials for future devices. The findings from the group's theoretical calculations and experimental approaches are published in the Journal of Applied Physics.

"The application of tensile biaxial strain leads to an increase of the critical temperature, implying that achieving high temperature superconductivity becomes easier under strain," said the study's first author from the University of Belgrade's LEX Laboratory, Vladan Celebonovic.

 

Strain enables new applications of 2-D materials, Phys.org

Read more…