Comparison of cathode volume changes in all-solid-state cells under low-pressure operation. Credit: Korea Institute of Science and Technology
Topics: Batteries, Chemistry, Climate Change, Lithium, Materials Science, Nanomaterials
Often referred to as the "dream batteries," all-solid-state batteries are the next generation of batteries that many battery manufacturers are competing to bring to market. Unlike lithium-ion batteries, which use a liquid electrolyte, all components, including the electrolyte, anode, and cathode, are solid, reducing the risk of explosion, and are in high demand in markets ranging from automobiles to energy storage systems (ESS).
However, devices that maintain the high pressure (10s of MPa) required for stable operation of all-solid-state batteries have problems that reduce the battery performance, such as energy density and capacity, and must be solved for commercialization.
Dr. Hun-Gi Jung and his team at the Energy Storage Research Center at the Korea Institute of Science and Technology (KIST) have identified degradation factors that cause rapid capacity degradation and shortened lifespan when operating all-solid-state batteries at pressures similar to those of lithium-ion batteries. The research is published in the journal Advanced Energy Materials.
Unlike previous studies, the researchers confirmed for the first time that degradation can occur inside the cathode as well as outside, showing that all-solid-state batteries can be operated reliably even in low-pressure environments.
In all-solid-state batteries, the cathode and anode have a volume change during repeated charging and discharging, resulting in interfacial degradation, such as side reaction and contact loss between active materials and solid electrolytes, which increase the interfacial resistance and worsen cell performance.
To solve this problem, external devices are used to maintain high pressure, but this has the disadvantage of reducing energy density as the weight and volume of the battery increase. Research is being conducted on the inside of the all-solid-state cell to maintain the performance of the cell, even in low-pressure environments.
Investigation of the degradation mechanism for all-solid-state batteries takes another step toward commercialization, National Research Council of Science and Technology.