Physicist Na Young Kim, at the optical bench |
Stanford physicists have created a new method of producing coherent matter beams. The new laser system would use a hundredth the power of conventional lasers and could one day be used in many places from consumer goods to quantum computers.
BY THOMAS SUMNER
Lasers are an unseen backbone of modern society. They're integral to technologies ranging from high-speed Internet services to Blu-ray players.
The physics powering lasers, however, has remained relatively unchanged through 50 years of use. Now, an international research team led by Stanford's Yoshihisa Yamamoto, a professor of electrical engineering and of applied physics, has demonstrated a revolutionary electrically driven polariton laser that could significantly improve the efficiency of lasers.
The system makes use of the unique physical properties of bosons, subatomic particles that scientists have attempted to incorporate into lasers for decades.
"We've solidified our physical understanding, and now it's time we think about how to put these lasers into practice," said physicist Na Young Kim, a member of the Stanford team. "This is an exciting era to imagine how this new physics can lead to novel engineering."
Electrically driven polariton lasers, Kim said, would operate using one-hundredth of the power of conventional lasers and could one day be used in many places from consumer goods to quantum computers.
Stanford News Service:
Stanford physicists develop revolutionary low-power polariton laser
Comments