quantum_computer (6)

City-Sized, Secure Quantum Network...

Physicists Create City-Sized Ultrasecure Quantum Network

Quantum physics experiment has demonstrated an important step toward achieving quantum cryptography among many users, an essential requirement for a secure quantum Internet. Credit: ÖAW and Klaus Pichler Getty Images

Topics: Cryptography, Futurism, Internet of Things, Modern Physics, Quantum Computer, Quantum Mechanics

Quantum cryptography promises a future in which computers communicate with one another over ultrasecure links using the razzle-dazzle of quantum physics. But scaling up the breakthroughs in research labs to networks with a large number of nodes has proved difficult. Now an international team of researchers has built a scalable city-wide quantum network to share keys for encrypting messages.

The network can grow in size without incurring an unreasonable escalation in the costs of expensive quantum hardware. Also, this system does not require any node to be trustworthy, thus removing any security-sapping weak links.

“We have tested it both in the laboratory and in deployed fibers across the city of Bristol” in England, says Siddarth Koduru Joshi of the University of Bristol. He and his colleagues demonstrated their ideas using a quantum network with eight nodes in which the most distant nodes were 17 kilometers apart, as measured by the length of the optical fiber connecting them. The team’s findings appeared in Science Advances on September 2.

Physicists Create City-Sized Ultrasecure Quantum Network, Anil Ananthaswamy, Scientific American

 
 
Read more…

Quantum Hush...

Tim-Wogan-10-Aug-quantum-secrets.jpg

Party line: the new protocol allows 10 parties to share information securely. (Courtesy: University of Witwatersrand)

Topics: Cryptography, Quantum Computer, Quantum Mechanics

A “quantum secret sharing” scheme that allows 10 parties to share information securely – the highest number so far – has been developed and demonstrated by researchers in South Africa. The protocol involves each party performing quantum operations on the photon without measuring its state and the team says it could help increase both the rate at which data is shared on secure quantum networks and how many parties can be involved in the sharing.

In the original quantum key distribution (QKD) protocol, two parties, known as Alice and Bob, communicate by exchanging photons polarized in one of two possible bases over an untrusted link, each varying the polarization basis of his or her transmitter or receiver randomly. At the end of the transmission, Alice and Bob reveal to each other which basis they used to measure the photons sent and received, but not the result of the measurements.  Alice and Bob then announce their results for a sample of the photons in which they measured in the same polarization basis, to check that the emitted polarization always agrees with the received one. If it does, they can use the remaining photons that they measured in the same basis to form a secure cryptography key that allows them to communicate securely using conventional telecoms technology. A third party that intercepts the photons inevitably disturbs their state, so some of Alice and Bob’s measurements disagree and they know the line is bugged.

‘Quantum secret sharing’ scheme allows 10 parties to communicate securely, Physics World

Read more…

Hybrid Quantum Networking...

DFB14820-609D-4B15-828A2C4BC8442539_source.jpg
Credit: Getty Images

 

Topics: Computer Science, Modern Physics, Quantum Computer, Quantum Mechanics

In a world’s first, researchers in France and the U.S. have performed a pioneering experiment demonstrating “hybrid” quantum networking. The approach, which unites two distinct methods of encoding information in particles of light called photons, could eventually allow for more capable and robust communications and computing.

Similar to how classical electronics can represent information as digital or analog signals, quantum systems can encode information as either discrete variables (DVs) in particles or continuous variables (CVs) in waves. Researchers have historically used one approach or the other—but not both—in any given system.

“DV and CV encoding have distinct advantages and drawbacks,” says Hugues de Riedmatten of the Institute of Photonic Sciences in Barcelona, who was not a part of the research. CV systems encode information in the varying intensity, or phasing, of light waves. They tend to be more efficient than DV approaches but are also more delicate, exhibiting stronger sensitivity to signal losses. Systems using DVs, which transmit information by the counting of photons, are harder to pair with conventional information technologies than CV techniques. They are also less error-prone and more fault-tolerant, however. Combining the two, de Riedmatten says, could offer “the best of both worlds.”

‘Hybrid’ Quantum Networking Demonstrated for First Time, Dhananjay Khadilkar, Scientific American

Read more…

Majorana qubits...

pt.3.4499.figures.online.f6.jpeg
Image Source: Link below

 

Topics: History, Modern Physics, Quantum Computer, Quantum Mechanics

Soon after Enrico Fermi became a professor of physics at Italy’s University of Rome in 1927, Ettore Majorana joined his research group. Majorana’s colleagues described him as humble because he considered some of his work unexceptional. For example, Majorana correctly predicted in 1932 the existence of the neutron, which he dubbed a neutral proton, based on an atomic-structure experiment by Irène Joliot-Curie and Frédéric Joliot-Curie. Despite Fermi’s urging, Majorana didn’t write a paper. Later that year James Chadwick experimentally confirmed the neutron’s existence and was awarded the 1935 Nobel Prize in Physics for the discovery.

Nevertheless, Fermi thought highly of Majorana, as is captured in the following quote: “There are various categories of scientists, people of a secondary or tertiary standing, who do their best but do not go very far. There are also those of high standing, who come to discoveries of great importance, fundamental for the development of science. But then there are geniuses like Galileo and Newton. Well, Ettore was one of them.” Majorana only wrote nine papers, and the last one, about the now-eponymous fermions, was published in 1937 at Fermi’s insistence. A few months later, Majorana took a night boat to Palermo and was never seen again.1

In that final article, Majorana presented an alternative representation of the relativistic Dirac equation in terms of real wavefunctions. The representation has profound consequences because a real wavefunction describes particles that are their own antiparticles, unlike electrons and positrons. Since particles and antiparticles have opposite charges, fermions in his new representation must have zero charge. Majorana postulated that the neutrino could be one of those exotic fermions.

Although physicists have observed neutrinos for more than 60 years, whether Majorana’s hypothesis is true remains unclear. For example, the discovery of neutrino oscillations, which earned Takaaki Kajita and Arthur McDonald the 2015 Nobel Prize in Physics, demonstrates that neutrinos have mass. But the standard model requires that neutrinos be massless, so various possibilities have been hypothesized to explain the discrepancy. One answer could come from massive neutrinos that do not interact through the weak nuclear force. Such sterile neutrinos could be the particles that Majorana predicted. Whereas conclusive evidence for the existence of Majorana neutrinos remains elusive, researchers are now using Majorana’s idea for other applications, including exotic excitations in superconductors.

Majorana qubits for topological quantum computing, Physics Today

Ramón Aguado is a senior researcher at the Spanish National Research Council (CSIC) in Madrid.

Leo Kouwenhoven is a researcher at the Microsoft Quantum Lab Delft and a professor of applied physics at Delft University of Technology in the Netherlands.

Read more…

Quantum Time...

 

weird_time_tunnel_cover_1024.jpg
"Weird Time Tunnel." Image Source Below.

 

Topics: Quantum Computer, Quantum Mechanics, Thermodynamics

It's easy to take time's arrow for granted - but the gears of physics actually work just as smoothly in reverse. Maybe that time machine is possible after all?

An experiment from 2019 shows just how much wiggle room we can expect when it comes to distinguishing the past from the future, at least on a quantum scale. It might not allow us to relive the 1960s, but it could help us better understand why not.

Researchers from Russia and the US teamed up to find a way to break, or at least bend, one of physics' most fundamental laws of energy.

The second law of thermodynamics is less a hard rule and more of a guiding principle for the Universe. It says hot things get colder over time as energy transforms and spreads out from areas where it's most intense.

It's a principle that explains why your coffee won't stay hot in a cold room, why it's easier to scramble an egg than unscramble it, and why nobody will ever let you patent a perpetual motion machine.

Virtually every other rule in physics can be flipped and still make sense. For example, you could zoom in on a game of pool, and a single collision between any two balls won't look weird if you happened to see it in reverse.

On the other hand, if you watched balls roll out of pockets and reform the starting pyramid, it would be a sobering experience. That's the second law at work for you.

Electrons aren't like tiny billiard balls, they're more akin to information that occupies a space. Their details are defined by something called the Schrödinger equation, which represents the possibilities of an electron's characteristics as a wave of chance.

Physicists Have Reversed Time on The Smallest Scale Using a Quantum Computer
Mike McCrae, Science Alert

 

Read more…

Quantum Google...

IonQ-chip.png
Linear computation: montage of a photo of the chip containing the trapped ions and an image of the ions in a 1D array (Courtesy: Christopher Monroe) Physicsworld.com

 

Topics: Internet, Quantum Computer, Quantum Computing, Quantum Mechanics


Google said it has achieved a breakthrough in quantum computing research, saying an experimental quantum processor has completed a calculation in just a few minutes that would take a traditional supercomputer thousands of years.

The findings, published Wednesday in the scientific journal Nature, show that "quantum speedup is achievable in a real-world system and is not precluded by any hidden physical laws," the researchers wrote.

Quantum computing is a nascent and somewhat bewildering technology for vastly sped-up information processing. Quantum computers are still a long way from having a practical application but might one day revolutionize tasks that would take existing computers years, including the hunt for new drugs and optimizing city and transportation planning.

The technique relies on quantum bits, or qubits, which can register data values of zero and one—the language of modern computing—simultaneously. Big tech companies including Google, Microsoft, IBM and Intel are avidly pursuing the technology.

"Quantum things can be in multiple places at the same time," said Chris Monroe, a University of Maryland physicist who is also the founder of quantum startup IonQ. "The rules are very simple, they're just confounding."

 

Google touts quantum computing milestone
Rachel Lerman

Read more…