Image of the diffraction grating made by the researcher |
The exoskeleton of a tiny organism has been used as a diffraction grating by researchers in Vienna, who have carried out a molecular interferometry experiment using it. The team showed that a coherent molecular beam could be diffracted from the silicon-based cell walls of a marine alga. Algae are cheap and easily available, so replacing costly nanodevices with them in interferometry experiments would be beneficial, according to the researchers.
Contrary to classical mechanics, quantum physics states that a particle can act like a wave and vice versa – an idea that was first proposed by Nobel-prize-winning physicist Louis de Broglie back in 1923. While the idea that tiny particles such as electrons could behave like a wave came as a shock, scientists now know that even objects a million times more massive than electrons, such as complex molecules, also show quantum interference. Massive molecules have very small wavelengths and therefore a grating with extremely thin and closely spaced slits is needed to observe their diffraction. Currently, such sophisticated devices are specially fabricated using nanotechnology techniques.
Physics World: Diatoms bring the quantum effects to life
Comments