Swift Particles and Dark Matter...



Source: Same source for the Dark Matter definition below.


Topics: Astronomy, Astrophysics, Cosmology, Dark Matter, Einstein, General Relativity


Note: Your "secret decoder ring" for reading the Abstract.


Dark matter: It makes up about 85% of the universe, is invisible, and doesn't interact with matter except for gravitational effects. See: Center for Astrophysics, Harvard


"Tachyonic": Of, or referring to tachyons, (Greek for swift) theoretical particles that already travel faster-than-light and backward in time. Their rest mass, m0i, is assumed to be imaginary. As it loses energy, it's assumed to become infinitely fast, so you can see why it's a favorite science fiction trope, along with dark matter, literally tableau rasas.


ΛCDM assumes that the universe is composed of photons, neutrinos, ordinary matter (baryons, electrons), and cold (non-relativistic) dark matter, which only interacts gravitationally, plus "dark energy," which is responsible for the observed acceleration in the Hubble expansion. Source: Goddard Spaceflight Center: Lambda


H0 defines the Hubble constant, or, the rate at which the universe is expanding, determined by Hubble in the way back year of 1929 to be 500 km/s/Mpc. I'm going to defer to Wikipedia for this one.


km/s/Mpc = kilometers/second/megaparsec. Megaparsec is 1 million parsecs = 3,260,000 light years, or 3.26 x 106 light years.


t0 = the present age of the universe, t0 = 2tH/3, where "tH" is the Hubble time. t0 is roughly 13.7 × 109 years, or 4.32 × 1017 seconds.


Gyr = giga years, or 1 billion years = 1 x 109 years (a lot).




An open or hyperbolic Friedmann-Robertson-Walker spacetime dominated by tachyonic dark matter can exhibit an “inflected” expansion—initially decelerating, later accelerating—similar but not identical to that of now-standard ΛCDM models dominated by dark energy. The features of the tachyonic model can be extracted by fitting the redshift-distance relation of the model to data obtained by treating Type Ia supernovae as standard candles. Here such a model is fitted to samples of 186 and 1048 Type Ia supernovae from the literature. The fits yield values of H0 = (66.6±1.5) km/s/Mpc and H0 = (69.6±0.4) km/s/Mpc, respectively, for the current-time Hubble parameter, and t0 = (8.35 ± 0.68) Gyr and t0 = (8.15 ± 0.36) Gyr, respectively, for the comoving-time age of the Universe. Tests of the model against other observations will be undertaken in subsequent works.


Subject headings: cosmology, dark matter, tachyons, distance-redshift relation, supernovae


Testing Tachyon-Dominated Cosmology with Type Ia Supernovae, Samuel H. Kramer, Ian H. Redmount, Physics arXiv


E-mail me when people leave their comments –

You need to be a member of Blacksciencefictionsociety to add comments!

Join Blacksciencefictionsociety