Topics: Applied Physics, Condensed Matter Physics, Solid State Physics, Superconductors
Researchers at the U.S. Department of Energy's Ames Laboratory and partner institutions conducted a systematic investigation into the properties of the newest family of unconventional superconducting materials, iron-based compounds. The study may help the scientific community discover new superconducting materials with unique properties.
Researchers combined innovative crystal growth, highly sensitive magnetic measurements, and the controlled introduction of disorder through electron bombardment to create and study an entire range of compositions within a class of iron-based superconductors. They found that the key fundamental properties—transition temperature and magnetic field penetration depth—of these complex superconductors were dependent on composition and the degree of disorder in the material structure.
"This was a systematic approach to more fully understand the behavior of unconventional superconductors," said Ruslan Prozorov, Ames Laboratory faculty scientist and professor in the Department of Physics and Astronomy at Iowa State University. "We found that some proposed models of unconventional superconductivity in these iron-based compounds were compatible with our results, and this study further limited the possible theoretical mechanisms of superconductivity."Researchers combined innovative crystal growth, highly sensitive magnetic measurements, and the controlled introduction of disorder through electron bombardment to create and study an entire range of compositions within a class of iron-based superconductors. They found that the key fundamental properties—transition temperature and magnetic field penetration depth—of these complex superconductors were dependent on composition and the degree of disorder in the material structure.
Phys.org:
Scientists gain insight on mechanism of unconventional superconductivity
Ruslan Prozorov
Comments