Fast Charger...

12359976866?profile=RESIZE_710x

Significant Li plating capacity from Si anode. a, Li discharge profile in a battery of Li/graphite–Li5.5PS4.5Cl1.5 (LPSCl1.5)–LGPS–LPSCl1.5–SiG at current density 0.2 mA cm–2 at room temperature. Note that SiG was made by mixing Si and graphite in one composite layer. Inset shows the schematic illustration of stages 1–3 based on SEM and EDS mapping, which illustrate the unique Li–Si anode evolution in solid-state batteries observed experimentally in Figs. 1 and 2. b, FIB–SEM images of the SiG anode at different discharge states (i), (ii), and (iii) corresponding to points 1–3 in a, respectively. c, SEM–EDS mapping of (i), (ii), and (iii), corresponding to SEM images in b, where carbon signal (C) is derived from graphite, oxygen (O) and nitrogen (N) signals are from Li metal reaction with air and fluorine (F) is from the PTFE binder. d, Discharge profile of battery with cell construction Li-1M LiPF6 in EC/DMC–SiG. Schematics illustrate typical Si anode evolution in liquid-electrolyte batteries. e, FIB–SEM image (i) of SiG anode following discharge in the liquid-electrolyte battery shown in d; zoomed-in image (ii). Credit: Nature Materials (2024). DOI: 10.1038/s41563-023-01722-x

Topics: Applied Physics, Battery, Chemistry, Climate Change, Electrical Engineering, Mechanical Engineering

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new lithium metal battery that can be charged and discharged at least 6,000 times—more than any other pouch battery cell—and can be recharged in a matter of minutes.

The research not only describes a new way to make solid-state batteries with a lithium metal anode but also offers a new understanding of the materials used for these potentially revolutionary batteries.

The research is published in Nature Materials.

"Lithium metal anode batteries are considered the holy grail of batteries because they have ten times the capacity of commercial graphite anodes and could drastically increase the driving distance of electric vehicles," said Xin Li, Associate Professor of Materials Science at SEAS and senior author of the paper. "Our research is an important step toward more practical solid-state batteries for industrial and commercial applications."

One of the biggest challenges in the design of these batteries is the formation of dendrites on the surface of the anode. These structures grow like roots into the electrolyte and pierce the barrier separating the anode and cathode, causing the battery to short or even catch fire.

These dendrites form when lithium ions move from the cathode to the anode during charging, attaching to the surface of the anode in a process called plating. Plating on the anode creates an uneven, non-homogeneous surface, like plaque on teeth, and allows dendrites to take root. When discharged, that plaque-like coating needs to be stripped from the anode, and when plating is uneven, the stripping process can be slow and result in potholes that induce even more uneven plating in the next charge.

Solid-state battery design charges in minutes and lasts for thousands of cycles, Leah Burrows, Harvard John A. Paulson School of Engineering and Applied Sciences, Tech Xplore

You need to be a member of Blacksciencefictionsociety to add comments!

Join Blacksciencefictionsociety