particle_physics (2)

In Finnegan's Wake...

Murray Gell-Mann won the 1969 Nobel Prize in Physics.Credit: Santa Fe Institute


Topics: Nobel Laureate, Nobel Prize, Particle Physics, Quarks, Standard Model, Theoretical Physics

The Nobel Prize in Physics 1969 was awarded to Murray Gell-Mann "for his contributions and discoveries concerning the classification of elementary particles and their interactions."

The Nobel Prize in Physics 1969. Nobel Media AB 2019. Wed. 29 May 2019. < >

Murray Gell-Mann, one of the founders of modern particle physics, died on 24 May, aged 89. Gell-Mann’s most influential contribution was to propose the theory of quarks — fundamental particles that make up most ordinary matter.

To bring order to a plethora of recently discovered subatomic particles, in 1961 Gell-Mann proposed a set of rules based on symmetries in the fundamental forces of nature. The rules classified subatomic particles called hadrons into eight groups, a scheme he named the eightfold way in a reference to Buddhist philosophy.

In 1964, he realized that such rules would naturally arise if the particles were composed of two, three or more fundamental particles, held together by the strong nuclear force. (US–Russian physicist George Zweig came to the same conclusion independently in the same year.) Protons and neutrons, for example, would be made up of three of these more fundamental particles, which Gell-Man named quarks, inspired by a quote — “Three quarks for Muster Mark!” — from James Joyce’s 1939 novel Finnegan's Wake. [1]

Quarks and Leptons are the building blocks which build up matter, i.e., they are seen as the "elementary particles". In the present standard model, there are six "flavors" of quarks. They can successfully account for all known mesons and baryons (over 200). The most familiar baryons are the proton and neutron, which are each constructed from up and down quarks. Quarks are observed to occur only in combinations of two quarks (mesons), three quarks (baryons). There was a recent claim of observation of particles with five quarks (pentaquark), but further experimentation has not borne it out. [2]


1. Murray Gell-Mann, father of quarks, dies - US physicist was one of the chief architects of the standard model of particle physics. Davide Castelvecchi, Nature
2. Hyperphysics: Quarks

Read more…
Left, schematics of the apparatus (positron beam, collimators, SiN gratings and emulsion detector. A HpGe detector is used as beam monitor). Right, single-particle interference visibility as a function of the positron energy is in agreement with quantum mechanics (blue) and disagrees with classical physics (orange dashed). Courtesy: Politecnico di Milano


Topics: Antimatter, High Energy Physics, Particle Physics, Quantum Mechanics

Researchers in Italy and Switzerland have performed the first ever double-slit-like experiment on antimatter using a Talbot-Lau interferometer and a positron beam.

The classic double-slit experiment confirmed that light and matter have the characteristics of both waves and particles, a duality that was first put forward by de Broglie in 1923. This superposition principle is one of the main postulates of quantum mechanics and researchers have since been able to diffract and interfere matter waves of objects of increasing complexity – from electrons to neutrons and molecules.

The QUPLAS (QUantum Interferometry and Gravitation with Positrons and LAsers) collaboration, which includes researchers from the Politecnico di Milano L-NESS in Como, the Milan unit of the Istituto Nazionale di Fisica Nucleare (INFN), the Università degli Studi di Milano and the University of Bern, has now performed the first interference experiment on positrons – the antimatter equivalent of electrons.

“The experiment was first proposed for electrons by Albert Einstein and Richard Feynman as a thought experiment and realized by Merli, Missiroli and Pozzi in 1976 and more systematically by Tonomura and colleagues in 1989,” explains QUPLAS spokesman Marco Giammarchi of the INFN. “In this original experiment, which was voted by Physics World as the most beautiful experiment, the researchers demonstrated the specifically quantum effect of single particle interference, which – according to Feynman – is the central ‘mystery’ of quantum theory.”


Antimatter quantum interferometry makes its debut, Belle Dumé, Physics World

Read more…