spectroscopy (1)

Silicon Sees the Light...

Hamish-8-April-2020-silicon-light-emitters-crop.jpg
Silicon sees the light: Elham Fadaly (left) and Alain Dijkstra in their Eindhoven lab. (Courtesy: Sicco van Grieken/SURF)

 

Topics: Optics, Electrical Engineering, Nanotechnology, Research, Solar Power, Spectroscopy


A light-emitting silicon-based material with a direct bandgap has been created in the lab, fifty years after its electronic properties were first predicted. This feat was achieved by an international team led by Erik Bakkers at Eindhoven University of Technology in the Netherlands. They describe the new nanowire material as the “Holy Grail” of microelectronics. With further work, light-emitting silicon-based devices could be used to create low-cost components for optical communications, computing, solar energy and spectroscopy.

Silicon is the wonder material of electronics. It is cheap and plentiful and can be fabricated into ever smaller transistors that can be packed onto chips at increasing densities. But silicon has a fatal flaw when it comes to being used as a light source or solar cell. The semiconductor has an “indirect” electronic bandgap, which means that electronic transitions between the material’s valence and conduction bands involve vibrations in the crystal lattice. As a result, it is very unlikely that an excited electron in the conduction band of silicon will decay to the valence band by emitting light. Conversely, the absorption of light by silicon does not tend to excite valence electrons into the conduction band – a requirement of a solar cell.

 

Silicon-based light emitter is ‘Holy Grail’ of microelectronics, say researchers
Hamish Johnston, Physics World

Read more…