solar power (2)

Exciton Surfing...


Surfing excitons: Cambridge’s Alexander Sneyd with the transient-absorption microscopy set-up. (Courtesy: Alexander Sneyd)

Topics: Alternate Energy, Applied Physics, Materials Science, Nanotechnology, Solar Power

Organic solar cells (OSCs) are fascinating devices where layers of organic molecules or polymers carry out light absorption and subsequent transport of energy – the tasks that make a solar cell work. Until now, the efficiency of OSCs has been thought to be constrained by the speed at which energy carriers called excitons to move between localized sites in the organic material layer of the device. Now, an international team of scientists led by Akshay Rao at the UK’s University of Cambridge has shown that this is not the case. What is more, they have discovered a new quantum mechanical transport mechanism called transient delocalization, which allows OSCs to reach much higher efficiencies.

When light is absorbed by a solar cell, it creates electron-hole pairs called excitons and the motion of these excitons plays a crucial role in the operation of the device. An example of an organic material layer where light absorption and transport of excitons takes place is in a film of well-ordered poly(3-hexylthiophene) nanofibers. To study exciton transport, the team shone laser pulses at such a nanofiber film and observed its response.

Exciton wave functions were thought to be localized due to strong couplings with lattice vibrations (phonons) and electron-hole interactions. This means the excitons would move slowly from one localized site to the next. However, the team observed that the excitons were diffusing at speeds 1000 times greater than what had been shown for similar samples in previous research. These speeds correspond to a ground-breaking diffusion length of about 300 nm for such crystalline films. This means energy can be transported much faster and more efficiently than previously thought.

Exciton ‘surfing’ could boost the efficiency of organic solar cells, Rikke Plougmann, Physics World

Read more…

Colloidal Quantum Dots...


FIG. 1. (a) Schematic of La Mer and Dinegar's model for the synthesis of monodispersed CQDs. (b) Representation of the apparatus employed for CQD synthesis. Reproduced with permission from Murray et al., Annu. Rev. Mater Res. 30(1), 545–610 (2000). Copyright 2000 Annual Reviews.

Topics: Energy, Materials Science, Nanotechnology, Quantum Mechanics, Solar Power

Solution-processed colloidal quantum dot (CQD) solar cells are lightweight, flexible, inexpensive, and can be spray-coated on various substrates. However, their power conversion efficiency is still insufficient for commercial applications. To further boost CQD solar cell efficiency, researchers need to better understand and control how charge carriers and excitons transport in CQD thin films, i.e., the CQD solar cell electrical parameters including carrier lifetime, diffusion length, diffusivity, mobility, drift length, trap state density, and doping density. These parameters play key roles in determining CQD thin film thickness and surface passivation ligands in CQD solar cell fabrication processes. To characterize these CQD solar cell parameters, researchers have mostly used transient techniques, such as short-circuit current/open-circuit voltage decay, photoconductance decay, and time-resolved photoluminescence. These transient techniques based on the time-dependent excess carrier density decay generally exhibit an exponential profile, but they differ in the signal collection physics and can only be used in some particular scenarios. Furthermore, photovoltaic characterization techniques are moving from contact to non-contact, from steady-state to dynamic, and from small-spot testing to large-area imaging; what are the challenges, limitations, and prospects? To answer these questions, this Tutorial, in the context of CQD thin film and solar cell characterization, looks at trends in characterization technique development by comparing various conventional techniques in meeting research and/or industrial demands. For a good physical understanding of material properties, the basic physics of CQD materials and devices are reviewed first, followed by a detailed discussion of various characterization techniques and their suitability for CQD photovoltaic devices.

Advanced characterization methods of carrier transport in quantum dot photovoltaic solar cells, Lilei Hu, Andreas Mandelis, Journal of Applied Physics

Read more…