astrophysics (84)

Kilonovas and Gold...

9818000271?profile=RESIZE_710x

Artist's impression of a neutron-star merger (Courtesy: NASA)

Topics: Astronomy, Astrophysics, Chemistry, Materials Science, Neutron Stars

The amounts of heavy elements such as gold created when black holes merge with neutron stars have been calculated and compared with the amounts expected when pairs of neutron stars merge. The calculations were done by Hsin-Yu Chen and Salvatore Vitale at the Massachusetts Institute of Technology and Francois Foucart at the University of New Hampshire using advanced simulations and gravitational-wave observations made by the LIGO–Virgo collaboration. Their results suggest that merging pairs of neutron stars are likely to be responsible for more heavy elements in the universe than mergers of black holes with neutron stars.

Today, astrophysicists have an incomplete understanding of how elements heavier than iron are made. In this nucleosynthesis process, lighter nuclei must be able to capture neutrons from their surroundings. Astrophysicists believe this can happen in two ways, each producing about half of the heavy elements in the universe. These are the slow process (s-process) that occurs in large stars and the rapid process (r-process), which is believed to occur in extreme conditions such as the explosion of a star in a supernova. However, exactly where the r-process can take place is hotly debated.

One event that could support the r-process is the merger of a pair of neutron stars, which can result in a huge explosion called a kilonova. Indeed, such an event was seen by LIGO–Virgo in 2017, and simultaneous observations using light-based telescopes suggest that heavy elements were created in that event.

Merging neutron stars create more gold than collisions involving black holes, Sam Jarman, Physics World

Read more…

J0030...

9566313665?profile=RESIZE_710x

The pulsar J0030 appears to have two to three hotspots on its southern hemisphere only – finding astronomers didn’t expect.
NASA’s Goddard Space Flight Center/CI Lab
(animation on the page link below)

Topics: Astronomy, Astrophysics, NASA, Neutron Stars, Pulsars

NASA’s NICER instrument reveals that neutron stars are not as simple as we thought.

Pulsars are the lighthouses of the universe. These tiny, compact objects are neutron stars — the remnants of once-massive stars — that spin rapidly, beaming radiation into space. Now, for the first time, astronomers have mapped the surface of a 16-mile-wide pulsar in exquisite detail. The discovery calls into question astronomers’ textbook depiction of pulsar appearance and opens the door to learning more about these extreme objects.

The Neutron star Interior Composition Explorer, or NICER, searches for X-rays from extreme astronomical objects such as pulsars from its perch on the exterior of the International Space Station. Researchers used NICER to observe the pulsar J0030+0451, or J0030 for short, which is located 1,100 light-years away in the constellation Pisces, in a series of papers published in The Astrophysical Journal Letters. Two teams, one led by researchers at the University of Amsterdam and the other by researchers at the University of Maryland, used X-ray light from J0030 to map the pulsar’s surface and calculate its mass. Both teams arrived at a conclusion that was unexpected.

A New Picture

What the teams found presented a different picture: J0030 has two or three hotspots, all of which are located in the southern hemisphere. The researchers at the University of Amsterdam believe the pulsar has one small, circular spot and one thin, crescent-shaped spot spinning around its lower latitudes. The University of Maryland team discovered that the X-rays could be coming from two oval spots in the star’s southern hemisphere, as well as one cooler spot near the star’s south pole.

Neither result is the simple picture astronomers expected, indicating that the pulsar’s magnetic field, which causes the hotspots, is likely even more complex than originally assumed. While the result certainly leaves astronomers wondering, “It tells us NICER is on the right path to help us answer an enduring question in astrophysics: What form does matter take in the ultra-dense cores of neutron stars?” NICER science lead and study co-author Zaven Arzoumanian said in a press release.

Astronomers Map a Neutron Star’s Surface for the First Time, Ignat, I Love the Universe

Read more…

Yonder Water Worlds...

9547715694?profile=RESIZE_710x

Hot and humid The surface of a Hycean planet as interpreted by an artist. (Courtesy: Amanda Smith, University of Cambridge).

Topics: Astronomy, Astrophysics, Astrobiology, Exoplanets, Space Exploration

Hot, ocean-covered exoplanets with hydrogen-rich atmospheres could harbor life and may be more common than planets that are Earth-like in size, temperature, and atmospheric composition. According to astronomers at the University of Cambridge, UK, this newly defined class of exoplanets could boost the search for life elsewhere in the universe by broadening the search criteria and redefining which biosignatures are important.

Astronomers define the habitable or “Goldilocks” zone as the region where an exoplanet is neither too close nor too far from its host star to have liquid water on its surface – water being the perfect solvent for many forms of life. Previous studies of planetary habitability have focused primarily on searching for Earth-like exoplanets and evidence that they could harbor the kind of chemistry found in life on Earth. However, it has so far proven difficult to detect atmospheric signatures from Earth-like planets orbiting Sun-like stars.

Potentially habitable mini-Neptunes

Larger exoplanets are easier to detect than smaller, Earth-sized ones, and exoplanets around 1.6‒4 times bigger than the Earth, with masses of up to 15 Earth masses and temperatures that in some cases exceed 2000 K, are relatively common. These planets are known as mini-Neptune's as they are similar to the ice giant planets in our solar system.

Previous studies suggested that the high pressures and temperatures beneath these planets’ hydrogen-rich atmospheres were incompatible with life. However, based on their analysis of an exoplanet called K2-18b, exoplanet scientist Nikku Madhusudhan and colleagues at Cambridge say that life could, in fact, exist on a subset of mini-Neptunes that meet specific criteria.

This subset, which the researchers dub “Hycean” (hydrogen + ocean) planets, consists of planets that have radii up to 2.6 times larger than Earth’s and are capable of harboring vast oceans under atmospheres dominated by molecular hydrogen and water vapor. Such oceans could cover the whole planet and reach depths greater than the Earth’s oceans, and the researchers say that the conditions within them could be compatible with some forms of Earth-based microbial life. Hycean planets tidally locked with their host star could also exhibit habitable conditions on their permanent night side.

Astronomers define new class of potentially habitable ocean worlds, Chaneil James, Physics World

Read more…

Roaming Goldilocks...

9434657263?profile=RESIZE_584x

Image Source: Link below

Topics: Astrophysics, Planetary Science, SETI, Space Exploration

Even as a child, before he devoted his life to the search for extraterrestrial life, Frank Drake wondered whether Earth was alone in its ability to harbor life. He wasn’t the first or the only one to wonder. There’s a reason so many are fascinated by the question: Its answer helps reveal humankind’s place in the cosmos.

Drake’s musings inspired him to pursue astronomy, serving as director of the Arecibo Observatory in Puerto Rico and president of the SETI Institute — which, as the acronym suggests, is devoted to the Search for Extraterrestrial Intelligence, and exploring the possibilities of life elsewhere in the universe. Drake is perhaps most famous for his eponymous equation — an estimate of how many alien civilizations might exist in our galaxy. Presented in 1961, the equation is generally considered as the start of a new era of searches for extraterrestrial intelligence.

But decades after the invention of that famous equation, Drake has conceded that his estimates were overly conservative. Among the too-moderate assumptions was that a potentially inhabited other world must be orbiting a star — overlooking the possibility of life on rogue planets.

Sometimes called “nomads of the galaxy” or “orphan planets,” these cold, dark worlds careen through space with no home, no solar system, no sun to orbit. Long ago, they formed around a star but were flung out, abandoned by their parents. There are billions of rogue planets — astronomers estimate there could be at least one for every star — wandering the galaxy.

It may seem futile to search for life in such cold, desolate environments, but over the last two decades, astronomers have come up with a number of possible scenarios that would make life possible on a planet without a star.

Can Life Exist on a Rogue Planet? Katie McCormick, Discovery Magazine

Read more…

Flirting by Starlight...

9369703471?profile=RESIZE_710x

Image Source: Link below

Topics: Astrophysics, Electromagnetic Radiation, Entanglement, SETI

When we gaze up at the night sky, we might be accidentally eavesdropping on an alien conversation.

At least, that’s according to Imperial College London quantum physicist Terry Rudolph, who last week published preprint research theorizing that an advanced extraterrestrial civilization might alter the light coming off stars in order to communicate across a great distance, almost like a series of interstellar smoke signals.

The physics of the ordeal gets a bit dense — which is probably reasonable if aliens are rapidly communicating across star systems — but the basic idea is to use entangled photons from different stars to transmit messages that appear to be random twinkling to any nosy onlookers.

Roaming Charges

The idea, Rudolph notes, is technically possible as far as the physics are concerned, but pure speculation when it comes to any discussion of alien technology. But as he writes in the paper, any entangled communication among stars “can be rendered in principle indiscernible to those of us excluded from the conversation.”

So if there were a mega-advanced civilization out there colonizing the Milky Way galaxy, communication along the lines of what Rudolph has proposed could explain why we haven’t found any evidence of life beyond Earth.

Scientists Claim That Aliens May Be Communicating Via Starlight, Dan Robitzski, Futurism

Read more…

Five Stages...

9255792292?profile=RESIZE_710x

Image source: Link below

Topics: Astrophysics, Cosmology, Einstein, General Relativity, Star Trek

Note: One of the things you find out about sophomore, or junior year in physics is faster-than-light travel violates causality: the arrow of time points forward, not in "loop-de-loop." Thus, we can suspend belief as every version of Trek did time travel episodes, because superluminal speeds would allow grandfather paradoxes, so why not?

As a lifelong Trekkie, it pains me to critique genuine attempts at warp field mechanics. Just note the five stages of grief I have traveled often as I read such articles: "denial, anger, bargaining, depression and acceptance" (Elisabeth Kubler-Ross, and David Kessler), but based on the post that will appear in the morning, a little diversion might be a good thing.

For Erik Lentz, it all started with Star Trek. Every few episodes of Star Trek: The Next Generation, Captain Jean-Luc Picard would raise his hand and order, “Warp one, engage!” Then stars became dashes, and light-years flashed by at impossible speed. And Lentz, still in elementary school, wondered whether warp drive might also work in real life.

“At some point, I realized that the technology didn’t exist,” Lentz says. He studied physics at the University of Washington, wrote his Ph.D. dissertation on dark matter, and generally became far too busy to be concerned with science fiction. But then, at the start of the coronavirus pandemic, Lentz found himself alone in Göttingen, Germany, where he was doing postdoctoral work. He suddenly had plenty of free time on his hands—and childhood fancies in his head.

Lentz read everything he could find on warp drives in the scientific literature, which was not very much. Then he began to think about it for himself. After a few weeks, something occurred to him that everyone else seemed to have overlooked. Lentz put his idea on paper and discussed it with more experienced colleagues. A year later it was published in a physics journal.

It quickly became clear that Lentz was not the only person dreaming about warp drives. Media outlets all over the world picked up the story, and a dozen journalists asked for interviews. A discussion on the online forum Reddit attracted 2,700 comments and 33,000 likes. One Internet user wrote, “Anyone else feels like they were born 300 years too soon?”

Star Trek’s Warp Drive Leads to New Physics, Robert Gast, Scientific American

Read more…

Black Hole Storm...

9107990885?profile=RESIZE_710x

Topics: Astrophysics, Black Holes, Cosmology, Einstein, General Relativity

Note: From comments on a previous post, maybe science writers need to work on their chosen list of metaphors?

In the far reaches of the Universe, a supermassive black hole is throwing a tantrum.

It's blowing a tremendous wind into intergalactic space, and we're seeing the storm light from 13.1 billion years ago when the Universe was less than 10 percent of its current age. It's the most distant such tempest we've ever identified, and its discovery is a clue that could help astronomers unravel the history of galaxy formation.

"The question is when did galactic winds come into existence in the Universe?" said astronomer Takuma Izumi of the National Astronomical Observatory of Japan (NAOJ).

"This is an important question because it is related to an important problem in astronomy: How did galaxies and supermassive black holes coevolve?"

A Colossal Black Hole Storm Has Been Detected Raging in The Early Universe, Michelle Starr, Science Alert

Read more…

Ganymede...

9062576479?profile=RESIZE_584x

A global view of Ganymede, based on data gathered by NASA’s Voyager 1, Voyager 2, and Galileo spacecraft. Credit: USGS Astrogeology Science Center, Wheaton, NASA and JPL-Caltech

Topics: Astronomy, Astrophysics, NASA, Planetary Science, Space Exploration

Ganymede, get ready for your close-up.

No probe has gotten a good view of Jupiter’s largest moon since 2000 when NASA’s Galileo spacecraft swung past the strange world, which is the largest moon in the whole solar system. But on Monday (June 7),  at 1:35 p.m. EDT (1735 GMT), NASA’s Juno spacecraft will skim just 645 miles (1,038 kilometers) above Ganymede’s surface, gathering a host of observations as it does so.

“Juno carries a suite of sensitive instruments capable of seeing Ganymede in ways never before possible," principal investigator Scott Bolton, a space scientist at the Southwest Research Institute in San Antonio, said in a NASA statement. “By flying so close, we will bring the exploration of Ganymede into the 21st century.”

Ganymede is a fascinating world for scientists. Despite its status as a moon, it’s larger than the tiny planet Mercury and is the only moon to sport a magnetic field, a bubble of charged particles dubbed a magnetosphere. Until now, the only spacecraft to get a good look at Ganymede were NASA’s twin Voyager probes in 1979 and the Galileo spacecraft, which flew past the moon in 2000.

NASA’s Juno Set for Close Encounter with Jupiter’s Moon Ganymede, Meghan Bartels, SPACE.com, Scientific American

Read more…

Sun Quake...

8943583499?profile=RESIZE_710x

The first coronal mass ejection, or CME, observed by the Solar Orbiter Heliospheric Imager (SoloHI) appears as a sudden gust of white (the dense front from the CME) that expands into the solar wind. This video uses different images, created by subtracting the pixels of the previous image from the current image to highlight changes. The missing spot in the image on the far right is an overexposed area where light from the spacecraft solar array is reflected into SoloHI’s view. The little black and white boxes that blip into view are telemetry blocks – an artifact from compressing the image and sending it back down to Earth.
Credits: ESA & NASA/Solar Orbiter/SoloHI team/NRL

Topics: Astronomy, Astrophysics, ESA, Heliophysics, NASA

For the new Sun-watching spacecraft, the first solar eruption is always special.

On February 12, 2021, a little more than a year from its launch, the European Space Agency, and NASA’s Solar Orbiter caught sight of this coronal mass ejection or CME. This view is from the mission’s SoloHI instrument — short for Solar Orbiter Heliospheric Imager — which watches the solar wind, dust, and cosmic rays that fill the space between the Sun and the planets.

It's a brief, grainy view: Solar Orbiter’s remote sensing won’t enter full science mode until November. SoloHI used one of its four detectors at less than 15% of its normal cadence to reduce the amount of data acquired. Still, a keen eye can spot the sudden blast of particles, the CME, escaping the Sun, which is off-camera to the upper right. The CME starts about halfway through the video as a bright burst – the dense leading edge of the CME – and drifts off-screen to the left.

For SoloHI, catching this CME was a happy accident. At the time the eruption reached the spacecraft, Solar Orbiter had just passed behind the Sun from Earth’s perspective and was coming back around the other side. When the mission was being planned, the team wasn’t expecting to be able to record any data during that time.

A New Space Instrument Captures Its First Solar Eruption, Miles Hatfield, NASA

Read more…

Volume of Chaos...

8914855296?profile=RESIZE_584x

Topics: Astronomy, Astrophysics, Cosmology

Physicists have spent centuries grappling with an inconvenient truth about nature: Faced with three stars on a collision course, astronomers could measure their locations and velocities in nanometers and milliseconds and it wouldn’t be enough to predict the stars’ fates. 

But the cosmos frequently brings together trios of stars and black holes. If astrophysicists hope to fully understand regions where heavenly bodies mingle in throngs, they must confront the “three-body problem.” 

While the result of a single three-body event is unknowable, researchers are discovering how to predict the range of outcomes of large groups of three-body interactions. In recent years, various groups have figured out how to make statistical forecasts of hypothetical three-body matchups: For instance, if Earth tangled with Mars and Mercury thousands of times, how often would Mars get ejected? Now, a fresh perspective developed by physicist Barak Kol simplifies the probabilistic “three-body problem,” by looking at it from an abstract new perspective. The result achieves some of the most accurate predictions yet. 

Physicists Edge Closer to Taming the Three-Body Problem, Charlie Wood, Scientific American

Read more…

Antistars...

8890084664?profile=RESIZE_584x

Astronomers searched for candidate antimatter stars among nearly 6000 gamma-ray sources. After eliminating known objects and sources that lacked the spectral signature of an antistar, 14 possibles remained. (Courtesy: Simon Dupourqué/IRAP)

Topics: Astronomy, Astrophysics, Cosmology, High Energy Physics

Fourteen possible antimatter stars (“antistars”) have been flagged up by astronomers searching for the origin of puzzling amounts of antihelium nuclei detected coming from deep space by the Alpha Magnetic Spectrometer (AMS-02) on the International Space Station.

Three astronomers at the University of Toulouse – Simon Dupourqué, Luigi Tibaldo, and Peter von Ballmoos – found the possible antistars in archive gamma-ray data from NASA’s Fermi Gamma-ray Space Telescope. While antistars are highly speculative, if they are real, then they may be revealed by their production of weak gamma-ray emission peaking at 70 MeV, when particles of normal matter from the interstellar medium fall onto them and are annihilated.

Antihelium-4 was created for the first time in 2011, in particle collisions at the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory. At the time, scientists stated that if antihelium-4 were detected coming from space, then it would definitely have to come from the fusion process inside an antistar.

However, when it was announced in 2018 that AMS-02 had tentatively detected eight antihelium nuclei in cosmic rays – six of antihelium-3 and two of antihelium-4 – those unconfirmed detections were initially attributed to cosmic rays colliding with molecules in the interstellar medium and producing the antimatter in the process.

Subsequent analysis by scientists including Vivian Poulin, now at the University of Montpellier, cast doubt on the cosmic-ray origin since the greater the number of nucleons (protons and neutrons) that an antimatter nucleus has, the more difficult it is to form from cosmic ray collisions. Poulin’s group calculated that antihelium-3 is created by cosmic rays at a rate 50 times less than that detected by the AMS, while antihelium-4 is formed at a rate 105 times less.

The mystery of matter and antimatter

The focus has therefore turned back to what at first may seem an improbable explanation – stars made purely from antimatter. According to theory, matter and antimatter should have been created in equal amounts in the Big Bang, and subsequently, all annihilated leaving a universe full of radiation and no matter. Yet since we live in a matter-dominated universe, more matter than antimatter must have been created in the Big Bang – a mystery that physicists have grappled with for decades.

“Most scientists have been persuaded for decades now that the universe is essentially free of antimatter apart from small traces produced in collisions of normal matter,” says Tibaldo.

The possible existence of antistars threatens to turn this on its head. “The definitive discovery of antihelium would be absolutely fundamental,” says Dupourqué.

Are antimatter stars firing bullets of antihelium at Earth? Physics World, published in Physical Review D

Read more…

The Question is Moot...

8485593460?profile=RESIZE_584x

 

Topics: Astrobiology, Astronomy, Astrophysics, SETI

 

Cultural references: The post title refers to NC A&T Alumni, and Civil Rights icon Reverend Jesse Jackson's appearance on Saturday Night Live, and the Wow! signal. Personal note: This signal appeared on the same day my granddaughter was born.

 

<p>On April 29, 2019, the Parkes Radio Telescope in Australia began listing to the radio signals from the Sun’s nearest neighbor, Proxima Centauri, just over 4 lightyears away. The telescope was looking for evidence of solar flares and so listened for 30 minutes before retraining on a distant quasar to recalibrate and then pointing back.

 

In total, the telescope gathered 26 hours of data. But when astronomers analyzed it in more detail, they noticed something odd — a single pure tone at a frequency of 982.02 MHz that appeared five times in the data.

 

The signal was first reported last year in The Guardian, a British newspaper. The article raised the possibility that the signal may be evidence of an advanced civilization on Proxima Centauri, a red dwarf star that is known to have an Earth-sized planet orbiting in its habitable zone.

 

But researchers have consistently played down this possibility saying that, at the very least, the signal must be observed again before any conclusions can be drawn. Indeed, the signal has not been seen again, despite various searches.

 

Now Amir Siraj and Abraham Loeb from Harvard University in Cambridge, Massachusetts, have calculated the likelihood that the signal came from a Proxima Centauri-based civilization, even without another observation. They say the odds are so low as to effectively rule out the possibility — provided the assumptions they make in their calculations are valid.</p>

 

Why The Recent Signal That Appeared to Come From Proxima Centauri Almost Certainly Didn't, Physics arXiv Blog, Discovery Magazine

 

Read more…

Lattice Confinement Fusion...

8445465476?profile=RESIZE_710x

Illustration of the main elements of the lattice confinement fusion process observed. In Part (A), a lattice of erbium is loaded with deuterium atoms (i.e., erbium deuteride), which exist here as deuterons. Upon irradiation with a photon beam, a deuteron dissociates, and the neutron and proton are ejected. The ejected neutron collides with another deuteron, accelerating it as an energetic “d*” as seen in (B) and (D). The “d*” induces either screened fusion (C) or screened Oppenheimer-Phillips (O-P) stripping reactions (E). In (C), the energetic “d*” collides with a static deuteron “d” in the lattice, and they fuse together. This fusion reaction releases either a neutron and helium-3 (shown) or a proton and tritium. These fusion products may also react in subsequent nuclear reactions, releasing more energy. In (E), a proton is stripped from an energetic “d*” and is captured by an erbium (Er) atom, which is then converted to a different element, thulium (Tm). If the neutron instead is captured by Er, a new isotope of Er is formed (not shown).

Topics: Astrophysics, NASA, Nuclear Fusion, Propulsion, Space Exploration, Spaceflight

A team of NASA researchers seeking a new energy source for deep-space exploration missions recently revealed a method for triggering nuclear fusion in the space between the atoms of a metal solid.

Their research was published in two peer-reviewed papers in the top journal in the field, Physical Review C, Volume 101 (April 2020): “Nuclear fusion reactions in deuterated metals” and “Novel nuclear reactions observed in bremsstrahlung-irradiated deuterated metals.”

Nuclear fusion is a process that produces energy when two nuclei join to form a heavier nucleus. “Scientists are interested in fusion because it could generate enormous amounts of energy without creating long-lasting radioactive byproducts,” said Theresa Benyo, Ph.D., of NASA’s Glenn Research Center. “However, conventional fusion reactions are difficult to achieve and sustain because they rely on temperatures so extreme to overcome the strong electrostatic repulsion between positively charged nuclei that the process has been impractical.

Called Lattice Confinement Fusion, the method NASA revealed accomplishes fusion reactions with the fuel (deuterium, a widely available non-radioactive hydrogen isotope composed of a proton, neutron, and electron, and denoted “D”) confined in the space between the atoms of a metal solid. In previous fusion research such as inertial confinement fusion, fuel (such as deuterium/tritium) is compressed to extremely high levels but for only a short, nano-second period of time, when fusion can occur. In magnetic confinement fusion, the fuel is heated in a plasma to temperatures much higher than those at the center of the Sun. In the new method, conditions sufficient for fusion are created in the confines of the metal lattice that is held at ambient temperature. While the metal lattice, loaded with deuterium fuel, may initially appear to be at room temperature, the new method creates an energetic environment inside the lattice where individual atoms achieve equivalent fusion-level kinetic energies.

NASA Detects Lattice Confinement Fusion

 

Read more…

Nabta Playa...

8437950886?profile=RESIZE_584x

The stone circle of Nabta Playa marks the summer solstice, a time that coincided with the arrival of monsoon rains in the Sahara Desert thousands of years ago. (Credit: Wikimedia Commons)

Topics: African Studies, Astronomy, Astrophysics, Diversity in Science

For thousands of years, ancient societies all around the world erected massive stone circles, aligning them with the sun and stars to mark the seasons. These early calendars foretold the coming of spring, summer, fall, and winter, helping civilizations track when to plant and harvest crops. They also served as ceremonial sites, both for celebration and sacrifice.

These megaliths — large, prehistoric monuments made of stone — may seem mysterious in our modern era, when many people lack a connection with, or even view of, the stars. Some even hold them up as supernatural or divined by aliens. But many ancient societies kept time by tracking which constellations rose at sunset, like reading a giant, celestial clock. And others pinpointed the sun’s location in the sky on the summer and winter solstice, the longest and shortest days of the year, or the spring and fall equinox.

Europe alone holds some 35,000 megaliths, including many astronomically-aligned stone circles, as well as tombs (or cromlechs) and other standing stones. These structures were mostly built between 6,500 and 4,500 years ago, largely along the Atlantic and Mediterranean coasts.

The most famous of these sites is Stonehenge, a monument in England that’s thought to be around 5,000 years old. Though still old, at that age, Stonehenge may have been one of the youngest such stone structures to be built in Europe.

The chronology and extreme similarities between these widespread European sites lead some researchers to think the regional tradition of constructing megaliths first emerged along the coast of France. It was then passed across the region, eventually reaching Great Britain.

But even these primitive sites are at least centuries younger than the world’s oldest known stone circle: Nabta Playa.

Located in Africa, Nabta Playa stands some 700 miles south of the Great Pyramid of Giza in Egypt. It was built more than 7,000 years ago, making Nabta Playa the oldest stone circle in the world — and possibly Earth’s oldest astronomical observatory. It was constructed by a cattle worshiping cult of nomadic people to mark the summer solstice and the arrival of the monsoons.

“Here is human beings’ first attempt to make some serious connection with the heavens," says J. McKim Malville, a professor emeritus at the University of Colorado and archeoastronomy expert.

Nabta Playa: The World's First Astronomical Site Was Built in Africa and Is Older Than Stonehenge, Eric Betz, Discover Magazine

Read more…

TNOs...

8295501291?profile=RESIZE_710x

 

Topics: Astronomy, Astrophysics, Comets, Space Exploration

 

Invisible structures generated by gravitational interactions in the Solar System have created a "space superhighway" network, astronomers have discovered.

 

These channels enable the fast travel of objects through space and could be harnessed for our own space exploration purposes, as well as the study of comets and asteroids.

 

By applying analyses to both observational and simulation data, a team of researchers led by Nataša Todorović of Belgrade Astronomical Observatory in Serbia observed that these superhighways consist of a series of connected arches inside these invisible structures, called space manifolds - and each planet generates its own manifolds, together creating what the researchers have called "a true celestial autobahn."

 

This network can transport objects from Jupiter to Neptune in a matter of decades, rather than the much longer timescales, on the order of hundreds of thousands to millions of years, normally found in the Solar System.

 

Finding hidden structures in space isn't always easy, but looking at the way things move around can provide helpful clues. In particular, comets and asteroids.

 

There are several groups of rocky bodies at different distances from the Sun. There's the Jupiter-family comets (JFCs), those with orbits of less than 20 years, that don't go farther than Jupiter's orbital paths.

 

Centaurs are icy chunks of rocks that hang out between Jupiter and Neptune. And the trans-Neptunian objects (TNOs) are those in the far reaches of the Solar System, with orbits larger than that of Neptune.

 

Astronomers Just Found Cosmic 'Superhighways' For Fast Travel Through The Solar System, Michelle Starr (no kidding), Science Alert

 

Read more…

Joan Feynman...

Joan Feynman

Image Source: American Physical Society (APS) News

Topics: Astrophysics, Condensed Matter Physics, Diversity in Science, Women in Science

Dr. Joan Feynman was "Surely, You're Joking," Nobel laureate Dr. Richard Feynman's baby sister, and an impressive scientist in her own right. We lost her in July. She broke through a lot of barriers that her science progeny are now, rightfully, walking through.

Joan Feynman, an astrophysicist known for her discovery of the origin of auroras, died on July 21. She was 93.

Over the course of her career, Feynman made many breakthroughs in furthering the understanding of solar wind and its interaction with the Earth’s magnetosphere, a region in space where the planetary magnetic field deflects charged particles from the sun. As author or co-author of more than 185 papers, Feynman’s research accomplishments range from discovering the shape of the Earth’s magnetosphere and identifying the origin of auroras to creating statistical models to predict the number of high-energy particles that would collide with spacecraft over time. In 1974, she would become the first woman ever elected as an officer of the American Geophysical Union, and in 2000 she was awarded NASA’s Exceptional Scientific Achievement Medal.

Feynman’s choice in pursuing a career as a scientist was often at odds with the expectations for women, especially the expectations for a wife and mother, but she persisted to become an accomplished astrophysicist. During the 2018 APS April Meeting, where Feynman spoke at the Kavli Foundation Plenary Session, she recalled her mother discouraging her childhood interest in science, calling “women’s brains too feeble,” likely a common belief at the time.</em>

For her fourteenth birthday, Richard gave Feynman a copy of Astronomy by Robert Horace Baker, a college-level physics text, that both taught her about physics and what was possible: Feynman credited a figure attributed to Cecilia Payne-Gaposchkin for proving to her that women could indeed have a career doing science.

As part of her research at JPL, Feynman identified the mechanism that leads to the formation of auroras and developed a statistical model to determine the number of high-energy particles expelled from coronal mass injections that would hit a spacecraft during its lifetime. After her retirement from a senior scientist position in 2003, Feynman continued to conduct research on the impact of solar activity on the early climate of the Earth and the role of climate stabilization in the development of agriculture.

Joan Feynman 1927–2020, Leah Poffenberger, APS News

Read more…

Oumuamua...

Mystery of Interstellar Visitor 'Oumuamua Gets Trickier

A 3D illustration of the interstellar object known as ‘Oumuamua. Credit: Getty Images

Topics: Astrophysics, Space Exploration, Spaceflight

Oumuamua—a mysterious, interstellar object that crashed through our solar system two years ago—might, in fact, be alien technology. That’s because an alternative, non-alien explanation might be fatally flawed, as a new study argues.

But most scientists think the idea that we spotted alien technology in our solar system is a long shot.

In 2018, our solar system ran into an object lost in interstellar space. The object, dubbed ‘Oumuamua, seemed to be long and thin—cigar-shaped—and tumbling end over end. Then, close observations showed it was accelerating as if something were pushing on it. Scientists still aren’t sure why.

One explanation? The object was propelled by an alien machine, such as a lightsail—a wide, millimeter-thin machine that accelerates as it’s pushed by solar radiation. The main proponent of this argument was Avi Loeb, a Harvard University astrophysicist.

Most scientists, however, think ‘Oumuamua’s wonky acceleration was likely due to a natural phenomenon. In June, a research team proposed that solid hydrogen was blasting invisibly off the interstellar object’s surface and causing it to speed up. 

Now, in a new paper published Monday (Aug. 17) in The Astrophysical Journal Letters, Loeb and Thiem Hoang, an astrophysicist at the Korea Astronomy and Space Science Institute, argue that the hydrogen hypothesis couldn’t work in the real world—which would mean that there is still hope that our neck of space was once visited by advanced aliens—and that we actually spotted their presence at the time.

Here’s the problem with ‘Oumuamua: It moved like a comet, but didn’t have the classic coma, or tail, of a comet, said astrophysicist Darryl Seligman, an author of the solid hydrogen hypothesis, who is starting a postdoctoral fellowship in astrophysics at the University of Chicago.

Mystery of Interstellar Visitor ‘Oumuamua Gets Trickier, Rafi Letzter, Live Science, Scientific American

Read more…

Remnant...

supernovae.png?w=594

Image Source: Link Below

Topics: Astrophysics, Interstellar, Plasma, Supernovae, Radiation

Scientists have found new evidence that Earth has been moving through the remains of exploded stars for at least the last 33,000 years.

In a new study published in the journal Proceedings of the National Academy of Sciences, a team of Australian researchers describes how they extracted a special isotope of iron called iron-60 from five deep-sea sediment samples using mass spectrometry.

That’s illuminating because as the researchers wrote in their paper, the isotope is “predominantly produced in massive stars and ejected in supernova explosions.” In other words, iron-60 is left over after a star explodes.

And because iron-60 is radioactive and decays in 15 million years, the theory is that our planet is continuously being dusted with the stuff as it’s moving through the “Local Interstellar Cloud,” a region of unclear origins made up of gas, dust, and plasma.

Scientists: Earth Moving Through Radioactive Debris of Exploded Stars, Victor Tangermann, Futurism

Read more…

Twins of a Young Sun...

twoplanetsystem.jpg
The first direct image of two exoplanets orbiting a Sun-like star, seen here, was captured by the SPHERE instrument on the ESO’s Very Large Telescope. The system is called TYC 8998-760-1 and is located some 300 light-years from Earth.

 

Topics: Astronomy, Astrophysics, Exoplanets

In another exoplanetary first, the European Southern Observatory's Very Large Telescope (VLT) in Chile's Atacama Desert has captured an image of two worlds orbiting a younger version of the Sun. The system, called TYC 8998-760-1, is located roughly 300 light-years away in the southern constellation Musca. And although it hides two gas giants orbiting a Sun-like star, we don’t have anything quite like these worlds in our own solar system.

The inner planet lies about 160 astronomical units from its host star (where one astronomical unit, or AU, is the average Earth-Sun distance) and is some 14 times the mass of Jupiter. With that amount of heft, the gas giant skirts the border between planet and brown dwarf, which is a type of almost-star. The more distant planet is located about 320 AU from its star and weighs in at about six Jupiter masses.

Two exoplanets seen dancing around Sun-like star for the first time, Mark Zastrow, Astronomy.com

Read more…

Starspots and Red Giants...

Sam-Jarman-21-July-2020-Red-giant-starspots-article.jpg
Red-giant spotter: artist’s impression of the Kepler space telescope in Earth orbit. (Courtesy: NASA)

 

Topics: Astronomy, Astrophysics, Solar Physics

Some red-giant stars are rotating much faster than previously thought, according to a study led by Patrick Gaulme at Germany’s Max Planck Institute for Solar System Research. Using NASA’s Kepler space telescope, the astronomers found that about 8% of the red giants they observed are rotating fast enough to display starspots. The team reckons that the elderly stars acquire their rapid rotation by following one of three distinct routes in their evolution.

In main sequence stars like the Sun, the complex interplay that occurs between stellar rotation and the motions of plasma creates incredibly lively magnetic fields. When this magnetic activity is particularly strong, upwelling plumes of plasma in a star’s convective outer layers can be blocked, producing dark patches on its surface. To an observer on Earth, these starspots cause a periodic variation in the star’s brightness as it rotates, bringing the spots in and out of our field of view.

Until recently, starspots were not thought to be present on red giant surfaces. Since these older stars expand rapidly as they move out of the main sequence, while maintaining their angular momentum, previous theories had predicted that they must rotate more slowly than main sequence stars. Slower rotation should reduce magnetic activity, preventing starspots from forming.

Starspot study sheds light on why some red giants spin faster than others, Sam Jarman, Physics World

Read more…