BLOGS

nist (2)

Dunamis Novem...

p81788358-3.jpg
Image source: "Dunamis Novem" link below

Topics: NIST, Quantum Mechanics, Research, STEAM


Quantum physics drives much of the research at the National Institute of Standards and Technology (NIST). Explaining this research is a challenge, because quantum physics—nature's rules for the smallest particles of matter and light—inspires words like weird, curious, and counter-intuitive. The quantum world is strange and invisible in the context of everyday life. And yet, quantum physics can be explained and at least partially demonstrated visually.

NIST physicist Ray Simmonds recently collaborated with MFA graduate candidate Sam Mitchell of the University of California, San Diego (UCSD), to create a dance piece based on the laws of quantum physics. The piece, Dunamis Novem (Latin for "the chance happening of nine things"),* premiered at The La Jolla Playhouse Forum Theatre in January, as a part of Mitchell's thesis work.

The project has practical benefits such as education, Simmonds says.

"While quantum mechanics is a well-established theory, proven true overwhelmingly by experiments, it is still confounding to most people, even those in science," Simmonds and Mitchell noted in describing their work.

“Quantum Statistics: Affects on Human Dancers and the Observer”

Abstract

The Arts and Sciences may seem to be immiscible fields of study, even at odds with each other. In Leonardo Da Vinci’s time these two fields were not polarized, in fact, they coexisted naturally. Despite the appearance of being far distant cousins, both artists and scientists share a creative gene, a passion for their work, and a brave curiosity that pushes them past current boundaries to explore the unknown. In this lecture, we will present some recent examples of those mixing these two worlds and our own attempts to do so with Dance Theater and Quantum Physics. While quantum mechanics is a well-established theory, proven true overwhelmingly by experiments, it is still confounding to most people, even those in science. At its heart, it describes nature in terms of possible realities with probable outcomes, with almost no predictable certainty. Experts still struggle to interpret its philosophical consequences and the notion that there may be no “objective reality”. Even Albert Einstein, one of its co-creators, disapproved of its bizarre properties, saying that “God does not play dice with the universe”. In the creation of this work, “Dunamis Novem”, we have taken some of the probabilistic rules that govern quantum systems and integrated them into a creative process. The results are then born from an artistic aesthetic and an algorithmic code that produces dynamics that embody in some way randomness, concepts of “quantum entanglement”, and the effects of observation or “measurement”. Our work shows that “Science” can inspire and direct new forms of “Art”, and we hope that the liminal world of “Art” can be an effective medium to transmit the sometimes counterintuitive results of empirical “Science” to a broader audience, also generating a dialogue between the two. We will describe the scientific concepts that currently inspire us, the process by which we convert quantum principles into movements, and the challenges of distilling this into a theatrical setting.

 

What is Quantum Physics? Dancers Explain, NIST
Sam Mitchel Dance: Dunamis Novem

Read more…

Ionic Clock...

Physics World: A brief history of timekeeping


Topics: Atomic Physics, Laser, NIST, Quantum Mechanics, Research


By confining single ions of aluminum and magnesium in an electric trap, cooling them to near absolute zero and probing them with laser beams, physicists at the National Institute of Standards and Technology (NIST) in Boulder, Colorado have built what is in effect the world’s most accurate clock. Having fractionally improved on the performance of another clock at NIST, the researchers have shown that their device would neither gain nor lose a second in 33 billion years (if it could run for that long). Such accurate timekeeping, they say, could boost geodesy and lead to new insights in fundamental physics.

The clocks that currently underpin atomic time rely on precisely measuring the frequency of microwaves emitted during a specific transition in cesium atoms. But such devices are limited by the relatively low frequency of that radiation. To keep time even more accurately, and eventually introduce a new definition of the second, physicists are developing clocks based on higher-frequency optical transitions.

The latest work at NIST features what is known as a quantum-logic clock. Built by Samuel Brewer and colleagues, it uses a positive ion of aluminum-27 as its timekeeper. When exposed to ultraviolet laser light at wavelength 267 nm, the ion undergoes a transition with a very narrow line width – making its frequency very well defined. What is more, that transition is largely immune to sources of external noise – such as blackbody radiation – that in other types of optical clock shift the frequency away from its true value.

A magnesium-25 ion is used to cool the aluminum down to the very low temperatures needed to minimize thermal noise. Cooling involves the absorption of photons at another specific frequency, but practical limitations mean that this cannot be done using the aluminum itself. This is because the required frequency in is too high for any practical laser. By entangling the two ions, the magnesium cools the aluminum via Coulomb interactions. This process also allows the quantum state of the aluminum ion to be read-out following exposure to the clock laser.

 

Entangled aluminum ion is world’s best timekeeper, Edwin Cartlidge, Physics World

Read more…