materials science (79)

Catalysis and Energy Savings…

11024141267?profile=RESIZE_710x

Credit: Pixabay/CC0 Public Domain

Topics: Chemistry, Computer Modeling, Environment, Materials Science

In an advance, they consider a breakthrough in computational chemistry research. University of Wisconsin–Madison chemical engineers have developed a model of how catalytic reactions work at the atomic scale. This understanding could allow engineers and chemists to develop more efficient catalysts and tune industrial processes—potentially with enormous energy savings, given that 90% of the products we encounter in our lives are produced, at least partially, via catalysis.

Catalyst materials accelerate chemical reactions without undergoing changes themselves. They are critical for refining petroleum products and for manufacturing pharmaceuticals, plastics, food additives, fertilizers, green fuels, industrial chemicals, and much more.

Scientists and engineers have spent decades fine-tuning catalytic reactions—yet because it's currently impossible to directly observe those reactions at the extreme temperatures and pressures often involved in industrial-scale catalysis, they haven't known exactly what is taking place on the nano and atomic scales. This new research helps unravel that mystery with potentially major ramifications for the industry.

In fact, just three catalytic reactions—steam-methane reforming to produce hydrogen, ammonia synthesis to produce fertilizer, and methanol synthesis—use close to 10% of the world's energy.

"If you decrease the temperatures at which you have to run these reactions by only a few degrees, there will be an enormous decrease in the energy demand that we face as humanity today," says Manos Mavrikakis, a professor of chemical and biological engineering at UW–Madison who led the research. "By decreasing the energy needed to run all these processes, you are also decreasing their environmental footprint."

New atomic-scale understanding of catalysis could unlock massive energy savings, Jason Daley, University of Madison-Wisconson

Read more…

Caveat Super...

10997708055?profile=RESIZE_584x

A diamond anvil is used to put superconducting materials under high pressure. Credit: J. Adam Fenster/University of Rochester

Topics: Applied Physics, Condensed Matter Physics, Materials Science, Superconductors

Will a possible breakthrough for room-temperature superconducting materials hold up to scrutiny?

This week researchers claimed to have discovered a superconducting material that can shuttle electricity with no loss of energy under near-real-world conditions. But drama and controversy behind the scenes have many worried that the breakthrough may not hold up to scientific scrutiny.

“If you were to find a room-temperature, room-pressure superconductor, you’d have a completely new host of technologies that would occur—that we haven’t even begun to dream about,” says Eva Zurek, a computational chemist at the University at Buffalo, who was not involved in the new study. “This could be a real game changer if it turns out to be correct.”

Scientists have been studying superconductors for more than a century. By carrying electricity without shedding energy in the form of heat, these materials could make it possible to create incredibly efficient power lines and electronics that never overheat. Superconductors also repel magnetic fields. This property lets researchers levitate magnets over a superconducting material as a fun experiment—and it could also lead to more efficient high-speed maglev trains. Additionally, these materials could produce super strong magnets for use in wind turbines, portable magnetic resonance imaging machines, or even nuclear fusion power plants.

The only superconducting materials previously discovered require extreme conditions to function, which makes them impractical for many real-world applications. The first known superconductors had to be cooled with liquid helium to temperatures only a few degrees above absolute zero. In the 1980s, researchers found superconductivity in a category of materials called cuprates, which work at higher temperatures yet still require cooling with liquid nitrogen. Since 2015 scientists have measured room-temperature superconductive behavior in hydrogen-rich materials called hydrides. but they have to be pressed in a sophisticated viselike instrument called a diamond anvil cell until they reach a pressure of about a quarter to half of that found near the center of Earth.

The new material, called nitrogen-doped lutetium hydride, is a blend of hydrogen, the rare-earth metal lutetium, and nitrogen. Although this material also relies on a diamond anvil cell, the study found that it begins exhibiting superconductive behavior at a pressure of about 10,000 atmospheres—roughly 100 times lower than the pressures that other hydrides require. The new material is “much closer to ambient pressure than previous materials,” says David Ceperley, a condensed matter physicist at the University of Illinois at Urbana-Champaign, who was not involved in the new study. He also notes that the material remains stable when stored at a room pressure of one atmosphere. “Previous stuff was only stable at a million atmospheres, so you couldn’t really take it out of the diamond anvil” cell, he says. “The fact that it’s stable at one atmosphere of pressure also means that it’d be easier to manufacture.”

Controversy Surrounds Blockbuster Superconductivity Claim, Sophie Bushwick, Scientific American

Read more…

Chips for America...

10993614889?profile=RESIZE_400x

Topics: Economics, Electrical Engineering, Materials Science, Semiconductor Technology

WASHINGTON — The Biden-Harris administration, through the U.S. Department of Commerce’s National Institute of Standards and Technology, today launched the first CHIPS for America funding opportunity for manufacturing incentives to restore U.S. leadership in semiconductor manufacturing, support good-paying jobs across the semiconductor supply chain, and advance U.S. economic and national security.

As part of the bipartisan CHIPS and Science Act, the Department of Commerce oversees $50 billion to revitalize the U.S. semiconductor industry, including $39 billion in semiconductor incentives. The first funding opportunity seeks applications for projects to construct, expand or modernize commercial facilities for the production of leading-edge, current-generation, and mature-node semiconductors. This includes both front-end wafer fabrication and back-end packaging. The department will also release a funding opportunity for semiconductor materials and equipment facilities in the late spring and one for research and development facilities in the fall.

“The CHIPS and Science Act presents a historic opportunity to unleash the next generation of American innovation, protect our national security and preserve our global economic competitiveness,” said Secretary of Commerce Gina M. Raimondo. “When we have finished implementing CHIPS for America, we will be the premier destination in the world where new leading-edge chip architectures can be invented in our research labs, designed for every end-use application, manufactured at scale, and packaged with the most advanced technologies. Throughout our work, we are committed to protecting taxpayer dollars, strengthening America’s workforce, and giving America’s businesses a platform to do what they do best: innovate, scale, and compete.”

The CHIPS and Science Act is part of President Joe Biden’s economic plan to invest in America, stimulating private sector investment, creating good-paying jobs, making more in the United States, and revitalizing communities left behind. 

CHIPS for America also today released a “Vision for Success,” laying out strategic objectives building on the vision Secretary Raimondo shared in her speech last week at Georgetown University’s School of Foreign Service. To advance U.S. economic and national security, the department aims to reach the following goals by the end of the decade: (1) make the U.S. home to at least two new large-scale clusters of leading-edge logic chip fabs, (2) make the U.S. home to multiple high-volume advanced packaging facilities, (3) produce high-volume leading-edge memory chips, and (4) increase production capacity for current-generation and mature-node chips, especially for critical domestic industries. Read more about these goals in the Vision for Success paper here.

NIST: Biden-Harris Administration Launches First CHIPS for America Funding Opportunity

Read more…

Scanning With a Twist...

10993157656?profile=RESIZE_710x

How it works: illustration of the quantum twisting microscope in action. Electrons tunnel from the probe (inverted pyramid at the top) to the sample (bottom) in several places at once (green vertical lines) in a quantum-coherent manner. (Courtesy: Weizmann Institute of Science)

Topics: Chemistry, Entanglement, Materials Science, Nanotechnology, Quantum Mechanics

When the scanning tunneling microscope debuted in the 1980s, the result was an explosion in nanotechnology and quantum-device research. Since then, other types of scanning probe microscopes have been developed, and together they have helped researchers flesh out theories of electron transport. But these techniques probe electrons at a single point, thereby observing them as particles and only seeing their wave nature indirectly. Now, researchers at the Weizmann Institute of Science in Israel have built a new scanning probe – the quantum twisting microscope – that detects the quantum wave characteristics of electrons directly.

“It’s effectively a scanning probe tip with an interferometer at its apex,” says Shahal Ilani, the team leader. The researchers overlay a scanning probe tip with ultrathin graphite, hexagonal boron nitride, and a van der Waals crystal such as graphene, which conveniently flopped over the tip like a tent with a flat top about 200 nm across. The flat end is key to the device’s interferometer function.  Instead of an electron tunneling between one point in the sample and the tip, the electron wave function can tunnel across multiple points simultaneously.

“Quite surprisingly, we found that the flat end naturally pivots so that it is always parallel with the sample,” says John Birkbeck, the corresponding author of a paper describing this work. This is fortunate because any tilt would alter the tunneling distance and hence strength from one side of the plateau to the other. “It is the interference of these tunneling paths, as identified in the measured current, that gives the device its unique quantum-wave probing function,” says Birkbeck.

Scanning probe with a twist observes the electron’s wavelike behavior, Anna Demming, Physics World

Read more…

Like Mushrooms for Plastics...

10973758052?profile=RESIZE_710x

Credit: VTT Technical Research Centre of Finland

Topics: Biology, Biotechnology, Chemistry, Materials Science, Mechanical Engineering

A research group from VTT Technical Research Center of Finland has unlocked the secret behind the extraordinary mechanical properties and ultra-light weight of certain fungi. The complex architectural design of mushrooms could be mimicked and used to create new materials to replace plastics. The research results were published on February 22, 2023, in Science Advances.

VTT's research shows for the first time the complex structural, chemical, and mechanical features adapted throughout the course of evolution by Hoof mushroom (Fomes fomentarius). These features interplay synergistically to create a completely new class of high-performance materials.

Research findings can be used as a source of inspiration to grow from the bottom up the next generation of mechanically robust and lightweight, sustainable materials for various applications under laboratory conditions. These include impact-resistant implants, sports equipment, body armor, and exoskeletons for aircraft, electronics, or windshield surface coatings.

Mushrooms could help replace plastics in new high-performance ultra-light materials, VTT Technical Research Centre of Finland, Phys.org.

Read more…

When Water Outpaces Silicon…

10948713060?profile=RESIZE_710x

On target: Water is fanned out through a specially developed nozzle, and then a laser pulse is passed through it to create a switch. (Courtesy: Adrian Buchmann)

Topics: Applied Physics, Lasers, Materials Science, Photonics, Semiconductor Technology

A laser-controlled water-based switch that operates twice as fast as existing semiconductor switches has been developed by a trio of physicists in Germany. Adrian Buchmann, Claudius Hoberg, and Fabio Novelli at Ruhr University Bochum used an ultrashort laser pulse to create a temporary metal-like state in a jet of liquid water. This altered the transmission of terahertz pulses over timescales of just tens of femtoseconds.

With the latest semiconductor-based switches approaching fundamental upper limits on how fast they can operate, researchers are searching for faster ways of switching signals. One unexpected place to look for inspiration is the curious behavior of water under extreme conditions – like those deep within ice-giant planets or created by powerful lasers.

Molecular dynamics simulations suggest water enters a metallic state at pressures of 300 GPa and temperatures of 7000 K. While such conditions do not occur on Earth, it is possible that this state contributes to the magnetic fields of Uranus and Neptune. To study this effect closer to home, recent experiments have used powerful, ultrashort laser pulses to trigger photo-ionization in water-based solutions – creating fleeting, metal-like states.

Water-based switch outpaces semiconductor devices, described in APL Photonics.

Read more…

Graphullerene...

10943741884?profile=RESIZE_710x

Credit: Nicoletta Barolini

Topics: Chemistry, Graphene, Materials Science, Modern Physics, Nanotechnology

Graphullerene, an atom-thin material made of linked fullerene subunits, gives scientists a new form of modular carbon to play with.

Carbon, in its myriad forms, has long captivated the scientific community. Besides being the primary component of all organic life on earth, material forms of carbon have earned their fair share of breakthroughs. In 1996, the Nobel Prize in Chemistry went to the discoverers of fullerene, a superatomic symmetrical structure of 60 carbon atoms shaped like a soccer ball; in 2010, researchers working with an ultra-strong, atom-thin version of carbon, known as graphene, won the Nobel Prize in Physics.

Today in work published in Nature, researchers led by Columbia chemists Xavier Roy, Colin Nuckolls, and Michael Steigerwald, with postdoc and first author Elena Meirzadeh have discovered a new version of carbon that sits somewhere in between fullerene and graphene: graphullerene. It’s a new two-dimensional form of carbon made up of layers of linked fullerenes peeled into ultrathin flakes from a larger graphullerite crystal—just like how graphene is peeled from graphite crystals (the same material found in pencils).

“It is amazing to find a new form of carbon,” said Nuckolls. “It also makes you realize that there is a whole family of materials that can be made in a similar way that will have new and unusual properties as a consequence of the information written into the superatomic building blocks.”

Columbia Chemists Discover a New Form of Carbon: Graphene’s “Superatomic” Cousin, Ellen Neff, Quantum.Columbia.edu

Read more…

Serendipitous Quasicrystals...

10923354081?profile=RESIZE_710x

Cross-section of a fulgurite sample showing fused sand and melted conductor metal from a downed powerline. Credit: Luca Bindi et al.

Topics: Condensed Matter Physics, Energy, Materials Science

A team of researchers from Università di Firenze, the University of South Florida, California Institute of Technology, and Princeton University has found an incidence of a quasicrystal formed during an accidental electrical discharge.

In their paper published in Proceedings of the National Academy of Sciences, the group describes their study of a quasicrystal found in a sand dune in Nebraska.

Quasicrystals, as their name suggests, are crystal-like substances. They possess characteristics not found in ordinary crystals, such as a non-repeating arrangement of atoms. To date, quasicrystals have been found embedded in meteorites and in the debris from nuclear blasts. In this new effort, the researchers found one embedded in a sand dune in Sand Hills, Nebraska.

A study of the quasicrystal showed it had 12-fold, or dodecagonal, symmetry—something rarely seen in quasicrystals. Curious about how it might have formed and ended up in the sand dune, the researchers did some investigating. They discovered that a power line had fallen on the dune, likely due to a lightning strike. They suggest the electrical surge from either the power line or the lightning could have produced the quasicrystal.

The researchers note that the quasicrystal was found inside a tubular piece of fulgurite. They suggest it was also formed during the electrical surge due to the fusing of melted sand and metal from the power line.

Quasicrystal formed during accidental electrical discharge, Bob Yirka, Phys.org

Read more…

Pushing Beyond Moore...

10917425279?profile=RESIZE_710x

Clean-room technicians at the AIM Photonics NanoTech chip fabrication facility in Albany, New York.  Credit: SUNY Polytechnic Institute

Topics: Computer Science, Electrical Engineering, Materials Science, Nanotechnology, Semiconductor Technology

Over 50 Years of Moore's Law - Intel

GAITHERSBURG, Md. — The U.S. Department of Commerce’s National Institute of Standards and Technology (NIST) has entered into a cooperative research and development agreement with AIM Photonics that will give chip developers a critical new tool for designing faster chips that use both optical and electrical signals to transmit information. Called integrated photonic circuits, these chips are key components in fiber-optic networks and high-performance computing facilities. They are used in laser-guided missiles, medical sensors, and other advanced technologies. 

AIM Photonics, a Manufacturing USA institute, is a public-private partnership that accelerates the commercialization of new technologies for manufacturing photonic chips. The New York-based institute provides small and medium-sized businesses, academics, and government researchers access to expertise and fabrication facilities during all phases of the photonics development cycle, from design to fabrication and packaging.

NIST and AIM Photonics Team Up on High-Frequency Optical/Electronic Chips

Read more…

OPVs...

10884770301?profile=RESIZE_710x

V. ALTOUNIAN/SCIENCE

Topics: Alternate Energy, Applied Physics, Chemistry, Materials Science, Solar Power

As ultrathin organic solar cells hit new efficiency records, researchers see green energy potential in surprising places.

In November 2021, while the municipal utility in Marburg, Germany, was performing scheduled maintenance on a hot water storage facility, engineers glued 18 solar panels to the outside of the main 10-meter-high cylindrical tank. It’s not the typical home for solar panels, most of which are flat, rigid silicon and glass rectangles arrayed on rooftops or in solar parks. The Marburg facility’s panels, by contrast, are ultrathin organic films made by Heliatek, a German solar company. In the past few years, Heliatek has mounted its flexible panels on the sides of office towers, the curved roofs of bus stops, and even the cylindrical shaft of an 80-meter-tall windmill. The goal: expanding solar power’s reach beyond flat land. “There is a huge market where classical photovoltaics do not work,” says Jan Birnstock, Heliatek’s chief technical officer.

Organic photovoltaics (OPVs) such as Heliatek’s are more than 10 times lighter than silicon panels and in some cases cost just half as much to produce. Some are even transparent, which has architects envisioning solar panels, not just on rooftops, but incorporated into building facades, windows, and even indoor spaces. “We want to change every building into an electricity-generating building,” Birnstock says.

Heliatek’s panels are among the few OPVs in practical use, and they convert about 9% of the energy in sunlight to electricity. But in recent years, researchers around the globe have come up with new materials and designs that, in small, lab-made prototypes, have reached efficiencies of nearly 20%, approaching silicon and alternative inorganic thin-film solar cells, such as those made from a mix of copper, indium, gallium, and selenium (CIGS). Unlike silicon crystals and CIGS, where researchers are mostly limited to the few chemical options nature gives them, OPVs allow them to tweak bonds, rearrange atoms, and mix in elements from across the periodic table. Those changes represent knobs chemists can adjust to improve their materials’ ability to absorb sunlight, conduct charges, and resist degradation. OPVs still fall short of those measures. But, “There is an enormous white space for exploration,” says Stephen Forrest, an OPV chemist at the University of Michigan, Ann Arbor.

Solar Energy Gets Flexible, Robert F. Service, Science Magazine

Read more…

Solar Lilly Pads...

10832249652?profile=RESIZE_710x

A floating artificial leaf – which generates clean fuel from sunlight and water – on the River Cam near King's College Chapel in Cambridge, UK. (Courtesy: Virgil Andrei)

Topics: Climate Change, Energy, Environment, Materials Science, Solar Power

Leaf-like devices that are light enough to float on water could be used to generate fuel from solar farms located on open water sources. This avenue hasn’t been explored before, according to researchers from the University of Cambridge in the UK who developed them. The new devices are made from thin, flexible substrates and perovskite-based light-absorbing layers. Tests showed that they can produce either hydrogen or syngas (a mixture of hydrogen and carbon monoxide) while floating on the River Cam.

Artificial leaves like these are a type of photoelectrochemical cell (PEC) that transforms sunlight into electrical energy or fuel by mimicking some aspects of photosynthesis, such as splitting water into its constituent oxygen and hydrogen. This differs from conventional photovoltaic cells, which convert light directly into electricity.

Because PEC artificial leaves contain both light harvesting and catalysis components in one compact device, they could, in principle, be used to produce fuel from sunlight cheaply and simply. The problem is that current techniques for making them can’t be scaled up. What is more, they are often composed of fragile and heavy bulk materials, which limits their use.

In 2019 a team of researchers led by Erwin Reisner developed an artificial leaf that produced syngas from sunlight, carbon dioxide, and water. This device contained two light absorbers and catalysts, but it also incorporated a thick glass substrate and coatings to protect against moisture, which made it cumbersome.

Floating artificial leaves could produce solar-generated fuel, Isabelle Dumé, Physics World

Read more…

Solid-State Cooling...

10814278684?profile=RESIZE_584x

Cool stuff: the diagram shows how the temperature of the caloric material was measured. The plot in the center shows the temperature change in the sample when exposed to a magnetic field. The plot on the right shows the change in temperature when the sample is strained. (Courtesy: Peng Wu et al/Acta Materialia 237 118154)

Topics: Global Warming, Green Tech, Materials Science, Solid-State Physics, Thermodynamics

Researchers in China have shown that applying strain to a composite material using an electric field induces a large and reversible caloric effect. This novel way of enhancing the caloric effect without a magnetic field could open new avenues of solid-state cooling and lead to more energy-efficient and lighter refrigerators.

The International Institute of Refrigeration estimates that 20% of all electricity used globally is expended on vapor-compression refrigeration – which is the technology used in conventional refrigerators and air conditioners. What is more, the refrigerants used in these systems are powerful greenhouse gases that contribute significantly to global warming. As a result, scientists are trying to develop more environmentally friendly refrigeration systems.

Cooling systems can also be made from completely solid-state systems, but these cannot currently compete with vapor compression for most mainstream applications. Today, most commercial solid-state cooling systems use the Peltier effect, which is a thermoelectric process that suffers from high cost and low efficiency.

Solid-state cooling is achieved via electric field-induced strain, Hardepinder Singh, Physics World

Read more…

Mirror, Mirror...

10780308878?profile=RESIZE_584x

Various views of a 3D-printed object are captured by a single camera using a dome-shaped array of mirrors. Left: The raw image. Right: closeups of some of the individual views. (Image: Sanha Cheong, SLAC National Accelerator Laboratory)

Topics: Applied Physics, Atomic-Scale Microscopy, Materials Science, Optics

(Nanowerk News) When it goes online, the MAGIS-100 experiment at the Fermi National Accelerator Laboratory and its successors will explore the nature of gravitational waves and search for certain kinds of wavelike dark matter. But first, researchers need to figure out something pretty basic: how to get good photographs of the clouds of atoms at the heart of their experiment.

Researchers at the Department of Energy's SLAC National Accelerator Laboratory realized that task would be perhaps the ultimate exercise in ultra-low light photography.

But a SLAC team that included Stanford graduate students Sanha Cheong and Murtaza Safdari, SLAC Professor Ariel Schwartzman, and SLAC scientists Michael Kagan, Sean Gasiorowski, Maxime Vandegar, and Joseph Frish found a simple way to do it: mirrors. By arranging mirrors in a dome-like configuration around an object, they can reflect more light towards the camera and image multiple sides of an object simultaneously.

And, the team reports in the Journal of Instrumentation ("Novel light field imaging device with an enhanced light collection for cold atom clouds"), that there's an additional benefit. Because the camera now gathers views of an object taken from many different angles, the system is an example of “light-field imaging”, which captures not just the intensity of light but also which direction light rays travel. As a result, the mirror system can help researchers build a three-dimensional model of an object, such as an atom cloud.

How do you take a better image of atom clouds? Mirrors - lots of mirrors, SLAC National Accelerator Laboratory

Read more…

Nanotubes and Nitro...

10380853652?profile=RESIZE_710x

Stored energy: a rendition of a system that combines polymeric nitrogen (blue chain) and carbon nanotube (clear spheres). (Courtesy: Heba Megahd)

Topics: Carbon Nanotubes, Materials Science, Nanotechnology

From TNT to nitro-glycerine, nitrogen-rich compounds are known for packing an explosive punch. When these materials explode, bonds between atoms in the compounds are broken, which gives a chance for two nitrogen atoms to form very strong triple bonds with each other. This releases an enormous amount of chemical energy due to the high strength of the triple bond, which is almost six times stronger than its single-band counterpart. In fact, the strength of nitrogen-nitrogen triple bonds is one of the reasons that the stable nitrogen gas dominates Earth’s atmosphere.

This chemical property of nitrogen is encouraging scientists to develop new nitrogen-rich compounds for use as high-energy-density materials that can be used as explosives or propellants. Polymeric nitrogen exists in the form of chains and tubes of linked nitrogen atoms with a high number of single or double bonds that can break and form triple bonds, releasing a large amount of energy and no dangerous by-products.

Several types of these polymers have been made at high temperatures and pressures, but they have been notoriously difficult to stabilize under ambient conditions. However, the electrochemical pressure inside the confined walls of carbon nanotubes may be the key to realizing these structures under more practical conditions. In a paper, published in Chinese Physics Letters, a team of scientists led by Jian Sun at Nanjing University provides a theoretical map of the process and the resulting compounds.

Carbon nanotubes could stabilize energy-rich nitrogen chains, Heba Megahd, Physics World

Read more…

Getting Back Mojo...

10244579465?profile=RESIZE_400x

Artist's representation of the circular phonons. (Courtesy: Nadja Haji and Peter Baum, University Konstanz)

Topics: Applied Physics, Lasers, Magnetism, Materials Science, Phonons

When a magnetic material is bombarded with short pulses of laser light, it loses its magnetism within femtoseconds (10–15 seconds). The spin, or angular momentum, of the electrons in the material, thus disappears almost instantly. Yet all that angular momentum cannot simply be lost. It must be conserved – somewhere.

Thanks to new ultrafast electron diffraction experiments, researchers at the University of Konstanz in Germany have now found that this “lost” angular momentum is in fact transferred from the electrons to vibrations of the material’s crystal lattice within a few hundred femtoseconds. The finding could have important implications for magnetic data storage and for developments in spintronics, a technology that exploits electron spins to process information without using much power.

In a ferromagnetic material, magnetism occurs because the magnetic moments of the material’s constituent atoms align parallel to each other. The atoms and their electrons then act as elementary electromagnets, and the magnetic fields are produced mainly by the spin of the electrons.

Because an ultrashort laser pulse can rapidly destroy this alignment, some scientists have proposed using such pulses as an off switch for magnetization, thereby enabling ultra-rapid data processing at frequencies approaching those of light. Understanding this ultrafast demagnetization process is thus crucial for developing such applications as well as for better understanding the foundations of magnetism.

Researchers find ‘lost’ angular momentum, Isabelle Dumé, Physics World

Read more…

Fantastic Plastic...

10108593093?profile=RESIZE_710x

Plastic fantastic: this perovskite-based device can be reconfigured and could play an important role in artificial intelligence systems. (Courtesy: Purdue University/Rebecca McElhoe)

Topics: Artificial Intelligence, Biology, Computer Science, Materials Science

Researchers in the US have developed a perovskite-based device that could be used to create a high-plasticity architecture for artificial intelligence. The team, led by Shriram Ramanathan at Purdue University, has shown that the material’s electronic properties can be easily reconfigured, allowing the devices to function like artificial neurons and other components. Their results could lead to more flexible artificial-intelligence hardware that could learn much like the brain.

Artificial intelligence systems can be trained to perform a task such as voice recognition using real-world data. Today this is usually done in software, which can adapt when additional training data are provided. However, machine learning systems that are based on hardware are much more efficient and researchers have already created electronic circuits that behave like artificial neurons and synapses.

However, unlike the circuits in our brains, these electronics are not able to reconfigure themselves when presented with new training information. What is needed is a system with high plasticity, which can alter its architecture to respond efficiently to new information.

Device can transform into four components for artificial intelligence systems, Sam Jarman, Physics World

Read more…

Quantum AI...

9858607872?profile=RESIZE_710x

Rutgers researchers and their collaborators have found that learning - a universal feature of intelligence in living beings - can be mimicked in synthetic matter, a discovery that in turn could inspire new algorithms for artificial intelligence (AI). (Courtesy: Rutgers University-New Brunswick)

Topics: Artificial Intelligence, Computer Science, Materials Science, Quantum Mechanics

Quantum materials known as Mott insulators can “learn” to respond to external stimuli in a way that mimics animal behavior, say researchers at Rutgers University in the US. The discovery of behaviors such as habituation and sensitization in these non-living systems could lead to new algorithms for artificial intelligence (AI).

Neuromorphic, or brain-inspired, computers aim to mimic the neural systems of living species at the physical level of neurons (brain nerve cells) and synapses (the connections between neurons). Each of the 100 billion neurons in the human brain, for example, receives electrical inputs from some of its neighbors and then “fires” an electrical output to others when the sum of the inputs exceeds a certain threshold. This process, also known as “spiking”, can be reproduced in nanoscale devices such as spintronic oscillators. As well as being potentially much faster and energy-efficient than conventional computers, devices based on these neuromorphic principles might be able to learn how to perform new tasks without being directly programmed to accomplish them.

Quantum material ‘learns’ like a living creature, Isabelle Dumé, Physics World

Read more…

Kilonovas and Gold...

9818000271?profile=RESIZE_710x

Artist's impression of a neutron-star merger (Courtesy: NASA)

Topics: Astronomy, Astrophysics, Chemistry, Materials Science, Neutron Stars

The amounts of heavy elements such as gold created when black holes merge with neutron stars have been calculated and compared with the amounts expected when pairs of neutron stars merge. The calculations were done by Hsin-Yu Chen and Salvatore Vitale at the Massachusetts Institute of Technology and Francois Foucart at the University of New Hampshire using advanced simulations and gravitational-wave observations made by the LIGO–Virgo collaboration. Their results suggest that merging pairs of neutron stars are likely to be responsible for more heavy elements in the universe than mergers of black holes with neutron stars.

Today, astrophysicists have an incomplete understanding of how elements heavier than iron are made. In this nucleosynthesis process, lighter nuclei must be able to capture neutrons from their surroundings. Astrophysicists believe this can happen in two ways, each producing about half of the heavy elements in the universe. These are the slow process (s-process) that occurs in large stars and the rapid process (r-process), which is believed to occur in extreme conditions such as the explosion of a star in a supernova. However, exactly where the r-process can take place is hotly debated.

One event that could support the r-process is the merger of a pair of neutron stars, which can result in a huge explosion called a kilonova. Indeed, such an event was seen by LIGO–Virgo in 2017, and simultaneous observations using light-based telescopes suggest that heavy elements were created in that event.

Merging neutron stars create more gold than collisions involving black holes, Sam Jarman, Physics World

Read more…

Quantum Exorcism...

9786514062?profile=RESIZE_584x

Figure 2. Maxwell’s demon is a hypothetical being that can observe individual molecules in a gas-filled box with a partition in the middle separating chambers A and B. If the demon sees a fast-moving gas molecule, it opens a trapdoor in the partition to let fast-moving molecules into chamber B while leaving slow-moving ones behind. Repeating that action would allow the buildup of a temperature difference between the two sides of the partition. A heat engine could use that temperature difference to perform work, which would contradict the second law of thermodynamics.

Topics: Chemistry, History, Materials Science, Quantum Mechanics, Thermodynamics

Thermodynamics is a strange theory. Although it is fundamental to our understanding of the world, it differs dramatically from other physical theories. For that reason, it has been termed the “village witch” of physics.1 Some of the many oddities of thermodynamics are the bizarre philosophical implications of classical statistical mechanics. Well before relativity theory and quantum mechanics brought the paradoxes of modern physics into the public eye, Ludwig Boltzmann, James Clerk Maxwell, and other pioneers of statistical mechanics wrestled with several thought experiments, or demons, that threatened to undermine thermodynamics.

Despite valiant efforts, Maxwell and Boltzmann were unable to completely vanquish the demons besetting the village witch of physics—largely because they were limited to the classical perspective. Today, experimental and theoretical developments in quantum foundations have granted present-day researchers and philosophers greater insights into thermodynamics and statistical mechanics. They allow us to perform a “quantum exorcism” on the demons haunting thermodynamics and banish them once and for all.

Loschmidt’s demon and time reversibility

Boltzmann, a founder of statistical mechanics and thermodynamics, was fascinated by one of the latter field’s seeming paradoxes: How does the irreversible behavior demonstrated by a system reaching thermodynamic equilibrium, such as a cup of coffee cooling down or a gas spreading out, arise from the underlying time-reversible classical mechanics?2 That equilibrating behavior only happens in one direction of time: If you watch a video of a wine glass smashing, you know immediately whether the video was in rewind or not. In contrast, the underlying classical or quantum mechanics are time-reversible: If you were to see a video of lots of billiard balls colliding, you wouldn’t necessarily know whether the video was in rewind or not. Throughout his career, Boltzmann pursued a range of strategies to explain irreversible equilibrating behavior from the underlying reversible dynamics. Boltzmann’s friend Josef Loschmidt famously objected to those attempts. He argued that the underlying classical mechanics allow for the possibility that the momenta are reversed, which would lead to the gas retracing its steps and “anti-equilibrating” to the earlier, lower-entropy state. Boltzmann challenged Loschmidt to try to reverse the momenta, but Loschmidt was unable to do so. Nevertheless, we can envision a demon that could. After all, it is just a matter of practical impossibility—not physical impossibility—that we can’t reach into a box of gas and reverse each molecule’s trajectory.

Technological developments since Loschmidt’s death in 1895 have expanded the horizons of what is practically possible (see figure 1). Although it seemed impossible during his lifetime, Loschmidt’s vision of reversing the momenta was realized by Erwin Hahn in 1950 in the spin-echo experiment, in which atomic spins that have dephased and become disordered are taken back to their earlier state by an RF pulse. If it is practically possible to reverse the momenta, what does that imply about equilibration? Is Loschmidt’s demon triumphant?

The demons haunting thermodynamics, Katie Robertson, Physics Today

Read more…

Big Bet on Small...

9710993672?profile=RESIZE_584x

Topics: Futurism, Materials Science, Nanotechnology

The National Nanotechnology Initiative promised a lot. It has delivered more.

We’re now more than two decades out from the initial announcement of the National Nanotechnology Initiative (NNI), a federal program from President Bill Clinton founded in 2000 to support nanotechnology research and development in universities, government agencies, and industry laboratories across the United States. It was a significant financial bet on a field that was better known among the general public for science fiction than scientific achievement. Today it’s clear that the NNI did more than influence the direction of research in the U.S. It catalyzed a worldwide effort and spurred an explosion of creativity in the scientific community. And we’re reaping the rewards not just in medicine, but also clean energy, environmental remediation, and beyond.

Before the NNI, there were people who thought nanotechnology was a gimmick. I began my research career in chemistry, but it seemed to me that nanotechnology was a once-in-a-lifetime opportunity: the opening of a new field that crossed scientific disciplines. In the wake of the NNI, my university, Northwestern University, made the strategic decision to establish the International Institute for Nanotechnology, which now represents more than $1 billion in pure nanotechnology research, educational programs, and supporting infrastructure. Other universities across the U.S. made similar investments, creating new institutes and interdisciplinary partnerships.

Moreover, as a new route to inter- or transdisciplinary research, which was at the core of the NNI, nanotechnology has driven a new narrative in STEM: collaboration. Nanotechnology has captured the imagination of a generation of materials scientists, chemists, physicists, and biologists to synthesize and understand new materials; as well as inspiring engineers who are trained to develop tools for making and manipulating such structures; and doctors who can use them in the clinic. Collaborative nanotechnology research at our institute unites faculty members from 32 departments across four schools at Northwestern. This diversity of training and perspective does more than broadening the scope of our research. It enables us to identify, understand and address big problems—and it helps us break down barriers between the lab and the marketplace.

A Big Bet on Nanotechnology Has Paid Off, Chad Mirkin is director of the International Institute for Nanotechnology, George B. Rathmann Professor of Chemistry and a professor of materials science and engineering, medicine, biomedical engineering, and chemical and biological engineering at Northwestern University.

Read more…